EconPapers    
Economics at your fingertips  
 

Low-Carbon Industrial Heating in the EU and UK: Integrating Waste Heat Recovery, High-Temperature Heat Pumps, and Hydrogen Technologies

Pouriya H. Niknam ()
Additional contact information
Pouriya H. Niknam: School of Engineering and Physical Sciences, University of Lincoln, Lincoln LN6 7TS, UK

Energies, 2025, vol. 18, issue 16, 1-26

Abstract: This research introduces a two-stage, low-carbon industrial heating process, leveraging advanced waste heat recovery (WHR) technologies and exploiting waste heat (WH) to drive decentralised hydrogen production. This study is supported by a data-driven analysis of individual technologies, followed by 0D modelling of the integrated system for technical and feasibility assessment. Within 10 years, the EU industry will be supported by two main strategies to transition to low-carbon energy: (a) shifting from grid-mix electricity towards fully renewable sources, and (b) expanding low-carbon hydrogen infrastructure within industrial clusters. On the demand side, process heating in the industrial sector accounts for 70% of total energy consumption in industry. Almost one-fifth of the energy consumed to fulfil the process heat demand is lost as waste. The proposed heating solution is tailored for process heat in industry and stands apart from the dual-mode residential heating system (i.e., heat pump and gas boiler), as it is based on integrated and simultaneous operation to meet industry-level reliability at higher temperatures, focusing on WHR and low-carbon hydrogen. The solution uses a cascaded heating approach. Low- and medium-temperature WH are exploited to drive high-temperature heat pumps (HTHPs), followed by hydrogen burners fuelled by hydrogen generated on-site by electrolysers, which are powered by advanced WHR technologies. The results revealed that the deployment of the solution at scale could fulfil ~14% of the process heat demand in EU/UK industries by 2035. Moreover, with further availability of renewable energy sources and clean hydrogen, it could have a higher contribution to the total process heat demand as a low-carbon solution. The economic analysis estimates that adopting the combined heating solution—benefiting from the full capacity of WHR for the HTHP and on-site hydrogen production—would result in a levelised cost of heat of ~EUR 84/MWh, which is lower than that of full electrification of industrial heating in 2035.

Keywords: industrial heating; industrial decarbonisation; high-temperature heat pump (HTHP); waste heat recovery (WHR); green hydrogen; electrolysis; organic Rankine cycle (ORC); levelised cost of heat (LCOH) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/16/4313/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/16/4313/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:16:p:4313-:d:1723936

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-08-14
Handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4313-:d:1723936