Influence of Fin Geometry on Enhancement of Phase Change Material Melting in a Finned Double-Pipe Heat Exchanger
Amr Owes Elsayed ()
Additional contact information
Amr Owes Elsayed: Mechanical and Energy Engineering Department, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam P.O. Box 1982, Saudi Arabia
Energies, 2025, vol. 18, issue 16, 1-17
Abstract:
Low thermal conductivity of phase change materials (PCMs) remains a major limitation in the design of efficient thermal energy storage systems. Enhancing the thermal performance of PCM storage units is therefore a critical design consideration. Fin geometry plays a pivotal role in improving the heat charging and discharging rates by influencing heat transfer mechanisms, particularly natural convection during melting. This study presents a two-dimensional numerical investigation of novel fin geometries aimed at accelerating the melting process of PCM in a double-pipe heat exchanger. Four fin designs are examined: single-step thickness reduction, double-step thickness reduction, stepwise thickness reduction/expansion, and smooth thickness reduction fins. These configurations are specifically developed to promote natural convection currents in the molten PCM regions adjacent to the fin’s surfaces. The enthalpy–porosity method is employed using ANSYS Fluent 19 to simulate the phase change process. The COUPLED algorithm is used for pressure–velocity coupling, with the PRESTO! scheme applied for pressure interpolation and a second-order upwind scheme adopted for the discretization of transport equations. The results demonstrate that the proposed thickness reduction fins significantly enhance the PCM melting rate by intensifying natural convection currents, driven by localized temperature gradients along the fin surfaces.
Keywords: influence of fin geometry; enhancement of PCM melting; double-pipe heat exchanger; numerical simulation of melting process (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/16/4355/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/16/4355/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:16:p:4355-:d:1725257
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().