EconPapers    
Economics at your fingertips  
 

Integrating Energy Transition into Protected Landscapes: Geoinformatic Solution for Low Visual Impact of Energy Infrastructure Development—A Case Study from Roztoczański National Park (Poland)

Szymon Chmielewski ()
Additional contact information
Szymon Chmielewski: Department of Grassland and Landscape Studies, University of Life Sciences in Lublin, Akademicka 15 St., 20-950 Lublin, Poland

Energies, 2025, vol. 18, issue 16, 1-25

Abstract: Energy transition, encompassing the development of renewable energy sources and associated power transmission grids, may significantly impact landscape visual resources, particularly those legally protected. Large-scale energy transitions require a mandatory visual impact assessment procedure, which utilises proximity and visibility analyses to comply with legal regulations and achieve minimal visual impact. While design stage proximity provides full compliance with the given country’s legal acts, the following visual impact analysis is more about demonstrating the low visual impact of design variants. Notably, at the energy infrastructure planning stage, the information on visual landscape resources remains insufficient; hence, avoiding conflicts is particularly challenging. To address this issue, a geoinformatic framework for Visual Landscape Absorption Capacity (VLAC) is proposed to support the sustainable planning of energy infrastructure right before the visual impact assessment. The framework involves identifying sensitive and valuable vantage points across the analysed landscape and determining the dimensions of energy infrastructure to be developed in a sustainable way regarding visual landscape resources. This paper presents a case study from Roztocze National Park in Poland, a protected area under significant pressure from solar farms and accompanying power transmission lines development. The results provide a critical assessment of the existing transmission lines (110 kV) and solar farms in relation to landscape visual resources, while also identifying three key areas where further infrastructure development can occur without landscape resource degradation. The framework geocomputation is based on digital elevation models, enabling easy replication in other locations to support the decision-making process and facilitate sustainable energy facility planning, thereby minimising potential conflicts with landscape resources.

Keywords: energy transition; high-voltage lines; solar farm; landscape visual capacity; protected area conservation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/16/4414/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/16/4414/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:16:p:4414-:d:1727571

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-08-20
Handle: RePEc:gam:jeners:v:18:y:2025:i:16:p:4414-:d:1727571