Influence of Inlet Temperature Differentials on Aerothermal Characteristics and Mass Flow Distribution in Multi-Inlet and Multi-Outlet Corotating-Disc Cavities
Clarence Jia Cheng Chai,
Xueying Li () and
Jing Ren
Additional contact information
Clarence Jia Cheng Chai: Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
Xueying Li: Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
Jing Ren: Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
Energies, 2025, vol. 18, issue 17, 1-24
Abstract:
To facilitate the development of next-generation gas turbine cooling systems, the present study systematically investigates the influence of inlet temperature differentials on the aerothermal characteristics and mass flow distribution within multi-inlet, multi-outlet corotating-disc cavities, for which inlet temperature differentials of 10 K, 30 K, and 50 K were applied. Steady-state Reynolds-averaged Navier–Stokes (RANS) simulations using the Shear Stress Transport (SST) k-ω model were performed across a range of flow conditions corresponding to Rossby numbers from 0.01 to 0.10, by varying the rotational and axial Reynolds numbers. This study finds that the inlet temperature differentials are a secondary driver of the aerothermal characteristics in the corotating cavity. Meanwhile, Rossby number dictates the main flow structure of radially stratified vortices and governs the thermal mixing between hot and cold streams. A higher Rossby number enhances mixing, causing the radial outlet temperature to rise significantly, while the axial outlet remains cool. A larger inlet temperature differential can induce secondary vortices at high Rossby numbers. Furthermore, the differential is revealed to increase cavity pressure, slightly reducing the radial outlet’s mass flow by up to 2.5% and its discharge coefficient by nearly 5% at high Rossby numbers. These insights allow engine designers to develop more precise and optimized cooling strategies.
Keywords: gas turbine; secondary air system; rotating cavity; computational fluid dynamics; Rossby number (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/17/4472/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/17/4472/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:17:p:4472-:d:1730596
Access Statistics for this article
Energies is currently edited by Ms. Cassie Shen
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().