EconPapers    
Economics at your fingertips  
 

Deep Reinforcement Learning Approaches the MILP Optimum of a Multi-Energy Optimization in Energy Communities

Vinzent Vetter, Philipp Wohlgenannt, Peter Kepplinger () and Elias Eder
Additional contact information
Vinzent Vetter: Illwerke vkw Endowed Professorship for Energy Efficiency, Energy Research Centre, Vorarlberg University of Applied Sciences, Hochschulstrasse 1, 6850 Dornbirn, Austria
Philipp Wohlgenannt: Illwerke vkw Endowed Professorship for Energy Efficiency, Energy Research Centre, Vorarlberg University of Applied Sciences, Hochschulstrasse 1, 6850 Dornbirn, Austria
Peter Kepplinger: Illwerke vkw Endowed Professorship for Energy Efficiency, Energy Research Centre, Vorarlberg University of Applied Sciences, Hochschulstrasse 1, 6850 Dornbirn, Austria
Elias Eder: Illwerke vkw Endowed Professorship for Energy Efficiency, Energy Research Centre, Vorarlberg University of Applied Sciences, Hochschulstrasse 1, 6850 Dornbirn, Austria

Energies, 2025, vol. 18, issue 17, 1-20

Abstract: As energy systems transition toward high shares of variable renewable generation, local energy communities (ECs) are increasingly relevant for enabling demand-side flexibility and self-sufficiency. This shift is particularly evident in the residential sector, where the deployment of photovoltaic (PV) systems is rapidly growing. While mixed-integer linear programming (MILP) remains the standard for operational optimization and demand response in such systems, its computational burden limits scalability and responsiveness under real-time or uncertain conditions. Reinforcement learning (RL), by contrast, offers a model-free, adaptive alternative. However, its application to real-world energy system operation remains limited. This study explores the application of a Deep Q-Network (DQN) to a real residential EC, which has received limited attention in prior work. The system comprises three single-family homes sharing a centralized heating system with a thermal energy storage (TES), a PV installation, and a grid connection. We compare the performance of MILP and RL controllers across economic and environmental metrics. Relative to a reference scenario without TES, MILP and RL reduce energy costs by 10.06% and 8.78%, respectively, and both approaches yield lower total energy consumption and CO 2 -equivalent emissions. Notably, the trained RL agent achieves a near-optimal outcome while requiring only 22% of the MILP’s computation time. These results demonstrate that DQNs can offer a computationally efficient and practically viable alternative to MILP for real-time control in residential energy systems.

Keywords: multi-energy optimization; energy community; net zero-energy building; reinforcement learning; mixed integer linear programming; deep Q-network (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/17/4489/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/17/4489/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:17:p:4489-:d:1731167

Access Statistics for this article

Energies is currently edited by Ms. Cassie Shen

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-08-28
Handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4489-:d:1731167