A Robust Collaborative Optimization of Multi-Microgrids and Shared Energy Storage in a Fraudulent Environment
Haihong Bian () and
Kai Ji
Additional contact information
Haihong Bian: School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China
Kai Ji: School of Electric Power Engineering, Nanjing Institute of Technology, Nanjing 211167, China
Energies, 2025, vol. 18, issue 17, 1-36
Abstract:
In the context of the coordinated operation of microgrids and community energy storage systems, achieving optimal resource allocation under complex and uncertain conditions has emerged as a prominent research focus. This study proposes a robust collaborative optimization model for microgrids and community energy storage systems under a game-theoretic environment where potential fraudulent behavior is considered. A multi-energy collaborative system model is first constructed, integrating multiple uncertainties in source-load pricing, and a max-min robust optimization strategy is employed to improve scheduling resilience. Secondly, a game-theoretic model is introduced to identify and suppress manipulative behaviors by dishonest microgrids in energy transactions, based on a Nash bargaining mechanism. Finally, a distributed collaborative solution framework is developed using the Alternating Direction Method of Multipliers and Column-and-Constraint Generation to enable efficient parallel computation. Simulation results indicate that the framework reduces the alliance’s total cost from CNY 66,319.37 to CNY 57,924.89, saving CNY 8394.48. Specifically, the operational costs of MG1, MG2, and MG3 were reduced by CNY 742.60, CNY 1069.92, and CNY 1451.40, respectively, while CES achieved an additional revenue of CNY 5130.56 through peak shaving and valley filling operations. Furthermore, this distributed algorithm converges within 6–15 iterations and demonstrates high computational efficiency and robustness across various uncertain scenarios.
Keywords: multi-microgrid; shared energy storage; robust optimization; fraud game; Nash negotiation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/17/4635/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/17/4635/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:17:p:4635-:d:1738803
Access Statistics for this article
Energies is currently edited by Ms. Cassie Shen
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().