EconPapers    
Economics at your fingertips  
 

Optimization of Grid-Connected and Off-Grid Hybrid Energy Systems for a Greenhouse Facility

Nuri Caglayan ()
Additional contact information
Nuri Caglayan: Department of Agricultural Machinery and Technology Engineering, Faculty of Agriculture, Akdeniz University, Antalya 07058, Türkiye

Energies, 2025, vol. 18, issue 17, 1-32

Abstract: This study evaluates the technical, economic, and environmental feasibility of grid-connected and off-grid hybrid energy systems designed to meet the energy demands of a greenhouse facility. Various system configurations were developed based on combinations of solar, wind, diesel, and battery storage technologies. The analysis considers a daily electricity consumption of 369.52 kWh and a peak load of 52.59 kW for the greenhouse complex. Among the grid-connected systems, the grid/PV configuration was identified as the most optimal, offering the lowest Net Present Cost (NPC) of USD 282,492, the lowest Levelized Cost of Energy (LCOE) at USD 0.0401/kWh, and a reasonable emissions reduction of 54.94%. For off-grid scenarios, the generator/PV/battery configuration was the most cost-effective option, with a total cost of USD 1.19 million and an LCOE of USD 0.342/kWh. Environmentally, this system showed a strong performance, achieving a 64.58% reduction in CO 2 emissions; in contrast, fully renewable systems such as PV/wind/battery and wind/battery configurations succeeded in reaching zero-emission targets but were economically unfeasible due to their very high investment costs and limited practical applicability. Sensitivity analyses revealed that economic factors such as inflation and energy prices have a critical effect on the payback time and the Internal Rate of Return (IRR).

Keywords: hybrid energy systems; renewable energy; greenhouse energy management; LCOE; environmental sustainability; economic feasibility (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/17/4712/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/17/4712/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:17:p:4712-:d:1742215

Access Statistics for this article

Energies is currently edited by Ms. Cassie Shen

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-09-05
Handle: RePEc:gam:jeners:v:18:y:2025:i:17:p:4712-:d:1742215