Artificial Intelligence Applications for Energy Storage: A Comprehensive Review
Tai Zhang () and
Goran Strbac
Additional contact information
Tai Zhang: Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK
Goran Strbac: Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK
Energies, 2025, vol. 18, issue 17, 1-44
Abstract:
The integration of artificial intelligence (AI) and machine learning (ML) technologies in energy storage systems has emerged as a transformative approach in addressing the complex challenges of modern energy infrastructure. This comprehensive review examines current state of the art AI applications in energy storage, from battery management systems to grid-scale storage optimization. We analyze various AI techniques, including supervised learning, deep learning, reinforcement learning, and neural networks, and their applications in state estimation, predictive maintenance, energy forecasting, and system optimization. The review synthesizes findings from the recent literature demonstrating quantitative improvements achieved through AI integration: distributed reinforcement learning frameworks reducing grid disruptions by 40% and operational costs by 12.2%, LSTM models achieving state of charge estimations with a mean absolute error of 0.10, multi-objective optimization reducing power losses by up to 22.8% and voltage fluctuations by up to 71%, and real options analysis showing 45–81% cost reductions compared to conventional planning approaches. Despite remarkable progress, challenges remain in terms of data quality, model interpretability, and industrial implementation. This paper provides insights into emerging technologies and future research directions that will shape the evolution of intelligent energy storage systems.
Keywords: artificial intelligence; energy storage; reinforcement learning; machine learning; energy forecasting; neural network; predictive maintenance (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/17/4718/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/17/4718/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:17:p:4718-:d:1742425
Access Statistics for this article
Energies is currently edited by Ms. Cassie Shen
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().