EconPapers    
Economics at your fingertips  
 

A Hybrid Deep Learning and PINN Approach for Fault Detection and Classification in HVAC Transmission Systems

Mohammed Almutairi () and Wonsuk Ko
Additional contact information
Mohammed Almutairi: Electrical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
Wonsuk Ko: Electrical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia

Energies, 2025, vol. 18, issue 18, 1-16

Abstract: High-Voltage Alternating Current (HVAC) transmission systems form the backbone of modern power grids, enabling efficient long-distance and high-capacity power delivery. In Saudi Arabia, ongoing initiatives to modernize and strengthen grid infrastructure demand advanced solutions to ensure system reliability, operational stability, and the minimization of economic losses caused by faults. Traditional fault detection and classification methods often depend on the manual interpretation of voltage and current signals, which is both labor-intensive and prone to human error. Although data-driven approaches such as Artificial Neural Networks (ANNs) and Deep Learning have been applied to automate fault analysis, their performance is often constrained by the quality and size of available training datasets, leading to poor generalization and physically inconsistent outcomes. This study proposes a novel hybrid fault detection and classification framework for the 380 kV Marjan–Safaniyah HVAC transmission line by integrating Deep Learning with Physics-Informed Neural Networks (PINNs). The PINN model embeds fundamental electrical laws, such as Kirchhoff’s Current Law (KCL), directly into the learning process, thereby constraining predictions to physically plausible behaviors and enhancing robustness and accuracy. Developed in MATLAB/Simulink using the Deep Learning Toolbox, the proposed framework performs fault detection and fault type classification within a unified architecture. A comparative analysis demonstrates that the hybrid PINN approach significantly outperforms conventional Deep Learning models, particularly by reducing false negatives and improving class discrimination. Furthermore, this study highlights the crucial role of balanced and representative datasets in achieving a reliable performance. Validation through confusion matrices and KCL residual histograms confirms the enhanced physical consistency and predictive reliability of the model. Overall, the proposed framework provides a powerful and scalable solution for real-time monitoring, fault diagnosis, and intelligent decision-making in high-voltage power transmission systems.

Keywords: hybrid deep learning; physics-informed neural network (PINN); fault detection; HVAC transmission systems; deep learning; fault classification; power systems; smart grid (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/18/4796/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/18/4796/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:18:p:4796-:d:1745472

Access Statistics for this article

Energies is currently edited by Ms. Cassie Shen

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-09-10
Handle: RePEc:gam:jeners:v:18:y:2025:i:18:p:4796-:d:1745472