Stochastic Biomechanical Modeling of Human-Powered Electricity Generation: A Comprehensive Framework with Advanced Monte Carlo Uncertainty Quantification
Qirui Ding and
Weicheng Cui ()
Additional contact information
Qirui Ding: Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, China
Weicheng Cui: Key Laboratory of 3D Micro/Nano Fabrication and Characterization of Zhejiang Province, School of Engineering, Westlake University, Hangzhou 310030, China
Energies, 2025, vol. 18, issue 18, 1-32
Abstract:
Human-powered electricity generation (HPEG) systems offer promising sustainable energy solutions, yet existing deterministic models fail to capture the inherent variability in human biomechanical performance. This study develops a comprehensive stochastic framework integrating advanced Monte Carlo uncertainty quantification with multi-component fatigue modeling and Pareto optimization. The framework incorporates physiological parameter vectors, kinematic variables, and environmental factors through multivariate distributions, addressing the complex stochastic nature of human power generation. A novel multi-component efficiency function integrates biomechanical, coordination, fatigue, thermal, and adaptation effects, while advanced fatigue dynamics distinguish between peripheral muscular, central neural, and substrate depletion mechanisms. Experimental validation (623 trials, 7 participants) demonstrates RMSE of 3.52 W and CCC of 0.996. Monte Carlo analysis reveals mean power output of 97.6 ± 37.4 W (95% CI: 48.4–174.9 W) with substantial inter-participant variability (CV = 37.6%). Pareto optimization identifies 19 non-dominated solutions across force-cadence space, with maximum power configuration achieving 175.5 W at 332.7 N and 110.4 rpm. This paradigm shift provides essential foundations for next-generation HPEG implementations across emergency response, off-grid communities, and sustainable infrastructure applications. The framework thus delivers dual contributions: advancing stochastic uncertainty quantification methodologies for complex biomechanical systems while enabling resilient decentralized energy solutions critical for sustainable development and climate adaptation strategies.
Keywords: human-powered electricity generation; stochastic modeling; Monte Carlo simulation; uncertainty quantification; sustainable energy systems (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/18/4821/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/18/4821/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:18:p:4821-:d:1746550
Access Statistics for this article
Energies is currently edited by Ms. Cassie Shen
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().