Enabling Intelligent Internet of Energy-Based Provenance and Green Electric Vehicle Charging in Energy Communities
Anthony Jnr. Bokolo ()
Additional contact information
Anthony Jnr. Bokolo: Department of Applied Data Science, Institute for Energy Technology, Os Alle 5, 1777 Halden, Norway
Energies, 2025, vol. 18, issue 18, 1-29
Abstract:
With the gradual shift towards the use of electric vehicles (EV), electricity demand is expected to increase especially in energy communities. Therefore, it is important to investigate how energy is generated as the provenance of electricity supply is directly linked to climate change. There are only a few studies that investigated the internet of energy and energy provenance, but this area of research is important to prevent the rebound effect of CO 2 emission due to the lack of a transparent approach that verifies the source of electricity consumed for charging EVs. The energy system is a complex network, which results in difficulty verifying the source of electricity as related to the generation of energy. Identifying the provenance of electricity is challenging since electricity is a non-physical element. Moreover, the volatility of a Renewable Energy Source (RES), such as solar and wind power farms, in relation to the complex electricity distribution system makes tracking and tracing challenging. Disruptive technologies, such as Distributed Ledger Technologies (DLT), have been previously adopted to trace the end-to-end stages of products. Likewise, artificial intelligence (AI) can be adopted for the optimization, control, dispatching, and management of energy systems. Therefore, this study develops a decentralized intelligent framework enabled by AI-based DLT and smart contracts deployed to accelerate the development of the internet of energy towards energy provenance in energy communities. The framework supports the tracing and tracking of RES type and source consumed for charging EVs. Findings from this study will help to accelerate the production, trading, distribution, sharing, and consumption of RES in energy communities.
Keywords: sustainable energy provenance; internet of energy; green EV charging; energy communities; artificial intelligence; distributed ledger technologies; smart contracts (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/18/4827/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/18/4827/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:18:p:4827-:d:1747005
Access Statistics for this article
Energies is currently edited by Ms. Cassie Shen
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().