Probabilistic Deliverability Assessment of Distributed Energy Resources via Scenario-Based AC Optimal Power Flow
Laurenţiu L. Anton () and
Marija D. Ilić
Additional contact information
Laurenţiu L. Anton: Electrical Engineering & Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Marija D. Ilić: Electrical Engineering & Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Energies, 2025, vol. 18, issue 18, 1-38
Abstract:
As electric grids decarbonize and distributed energy resources (DERs) become increasingly prevalent, interconnection assessments must evolve to reflect operational variability and control flexibility. This paper highlights key modeling limitations observed in practice and reviews approaches for modeling uncertainty. It then introduces a Probabilistic Deliverability Assessment (PDA) framework designed to complement and extend existing procedures. The framework integrates scenario-based AC optimal power flow (AC OPF), corrective dispatch, and optional multi-temporal constraints. Together, these form a structured methodology for quantifying DER utilization, deliverability, and reliability under uncertainty in load, generation, and topology. Outputs include interpretable metrics with confidence intervals that inform siting decisions and evaluate compliance with reliability thresholds across sampled operating conditions. A case study on Puerto Rico’s publicly available bulk power system model demonstrates the framework’s application using minimal input data, consistent with current interconnection practice. Across staged fossil generation retirements, the PDA identifies high-value DER sites and regions requiring additional reactive power support. Results are presented through mean dispatch signals, reliability metrics, and geospatial visualizations, demonstrating how the framework provides transparent, data-driven siting recommendations. The framework’s modular design supports incremental adoption within existing workflows, encouraging broader use of AC OPF in interconnection and planning contexts.
Keywords: distributed energy resources; interconnection studies; AC optimal power flow; scenario-based modeling; corrective dispatch; deliverability; expected utilization; Puerto Rico; hybrid solar siting; decarbonization (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/18/4832/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/18/4832/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:18:p:4832-:d:1747235
Access Statistics for this article
Energies is currently edited by Ms. Cassie Shen
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().