Thermo-Hydraulic Comparison of Vertical and Horizontal Spiral Ground Heat Exchangers
Josue Quirino (),
Fernando Lara (),
Oscar López-Núñez,
Jesús Cerezo,
Alexis Acuña,
Adolfo Ruelas,
Alvaro González-Angeles and
Arilí Cárdenas-Robles
Additional contact information
Josue Quirino: Facultad de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21280, Mexico
Fernando Lara: Facultad de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21280, Mexico
Oscar López-Núñez: Facultad de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21280, Mexico
Jesús Cerezo: Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos (UAEM), Cuernavaca 62209, Mexico
Alexis Acuña: Facultad de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21280, Mexico
Adolfo Ruelas: Facultad de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21280, Mexico
Alvaro González-Angeles: Facultad de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21280, Mexico
Arilí Cárdenas-Robles: Facultad de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali 21280, Mexico
Energies, 2025, vol. 18, issue 18, 1-22
Abstract:
Growing concerns about the energy crisis and global warming have driven interest in geothermal energy. This paper presents a numerical thermo-hydraulic comparison of spiral ground heat exchangers (SGHEs) in vertical and horizontal configurations. Numerical models were validated against experimental data using ANSYS Fluent 2023 R2. Five spiral pitch values were tested to analyze their impact on heat transfer rate (HTR), pressure drop, and total pipe length. Results showed that decreasing pitch increases HTR but significantly raises pressure drop and pipe length. Higher inlet fluid velocities also increased HTR but led to greater pressure drops. Under all tested conditions, the vertical configuration consistently outperformed the horizontal one, achieving up to 19.3% higher mean HTR. For both configurations, a 10 cm pitch provided the best balance between HTR, pressure drop, and pipe length. Increasing inlet velocity from 0.05 to 0.15 ms −1 increased mean HTR by approximately 30% for both configurations. These findings offer practical guidance for selecting the most appropriate SGHE configuration for specific geothermal applications.
Keywords: GHE; geothermal energy; ground-coupled; low-enthalpy; ground heat exchanger; spiral (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/18/4891/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/18/4891/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:18:p:4891-:d:1749615
Access Statistics for this article
Energies is currently edited by Ms. Cassie Shen
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().