EconPapers    
Economics at your fingertips  
 

Operational Optimization of Electricity–Hydrogen Coupling Systems Based on Reversible Solid Oxide Cells

Qiang Wang, An Zhang () and Binbin Long
Additional contact information
Qiang Wang: Hubei Provincial Engineering Research Center of Intelligent Energy Technology, Yichang 443002, China
An Zhang: College of Electrical and New Energy, China Three Gorges University, Yichang 443002, China
Binbin Long: College of Electrical and New Energy, China Three Gorges University, Yichang 443002, China

Energies, 2025, vol. 18, issue 18, 1-19

Abstract: To effectively address the issues of curtailed wind and photovoltaic (PV) power caused by the high proportion of renewable energy integration and to promote the clean and low-carbon transformation of the energy system, this paper proposes a “chemical–mechanical” dual-pathway synergistic mechanism for the reversible solid oxide cell (RSOC) and flywheel energy storage system (FESS) electricity–hydrogen hybrid system. This mechanism aims to address both short-term and long-term energy storage fluctuations, thereby minimizing economic costs and curtailed wind and PV power. This synergistic mechanism is applied to regulate system operations under varying wind and PV power output and electricity–hydrogen load fluctuations across different seasons, thereby enhancing the power generation system’s ability to integrate wind and PV energy. An economic operation model is then established with the objective of minimizing the economic costs of the electricity–hydrogen hybrid system incorporating RSOC and FESS. Finally, taking a large-scale new energy industrial park in the northwest region as an example, case studies of different schemes were conducted on the MATLAB platform. Simulation results demonstrate that the reversible solid oxide cell (RSOC) system—integrated with a FESS and operating under the dual-path coordination mechanism—achieves a 14.32% reduction in wind and solar curtailment costs and a 1.16% decrease in total system costs. Furthermore, this hybrid system exhibits excellent adaptability to the dynamic fluctuations in electricity–hydrogen energy demand, which is accompanied by a 5.41% reduction in the output of gas turbine units. Notably, it also maintains strong adaptability under extreme weather conditions, with particular effectiveness in scenarios characterized by PV power shortage.

Keywords: reversible solid oxide cell (RSOC); flywheel energy storage system (FESS); electricity–hydrogen coupled system; rapid response characteristics; renewable energy (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/18/4930/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/18/4930/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:18:p:4930-:d:1750889

Access Statistics for this article

Energies is currently edited by Ms. Cassie Shen

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-09-20
Handle: RePEc:gam:jeners:v:18:y:2025:i:18:p:4930-:d:1750889