EconPapers    
Economics at your fingertips  
 

Design of Robust Adaptive Nonlinear Backstepping Controller Enhanced by Deep Deterministic Policy Gradient Algorithm for Efficient Power Converter Regulation

Seyyed Morteza Ghamari, Asma Aziz () and Mehrdad Ghahramani
Additional contact information
Seyyed Morteza Ghamari: School of Engineering, Edith Cowan University, Joondalup 6027, Australia
Asma Aziz: School of Engineering, Edith Cowan University, Joondalup 6027, Australia
Mehrdad Ghahramani: School of Engineering, Edith Cowan University, Joondalup 6027, Australia

Energies, 2025, vol. 18, issue 18, 1-27

Abstract: Power converters play an important role in incorporating renewable energy sources into power systems. Among different converter designs, Buck and Boost converters are popular, as they use fewer components and deliver cost savings and high efficiency. However, Boost converters are known as non–minimum phase systems, imposing harder constraints for designing a robust converter. Developing an efficient controller for these topologies can be difficult since they exhibit nonlinearity and distortion in high frequency modes. The Lyapunov-based Adaptive Backstepping Control (ABSC) technology is used to regulate suitable outputs for these structures. This approach is an updated version of the technique that uses the stability Lyapunov function to produce increased stability and resistance to fluctuations in real-world circumstances. However, in real-time situations, disturbances with larger ranges such as supply voltage changes, parameter variations, and noise may have a negative impact on the operation of this strategy. To increase the controller’s flexibility under more difficult working settings, the most appropriate first gains must be established. To solve these concerns, the ABSC’s performance is optimized using the Reinforcement Learning (RL) adaptive technique. RL has several advantages, including lower susceptibility to error, more trustworthy findings obtained from data gathering from the environment, perfect model behavior within a certain context, and better frequency matching in real-time applications. Random exploration, on the other hand, can have disastrous effects and produce unexpected results in real-world situations. As a result, we choose the Deep Deterministic Policy Gradient (DDPG) approach, which uses a deterministic action function rather than a stochastic one. Its key advantages include effective handling of continuous action spaces, improved sample efficiency through off-policy learning, and faster convergence via its actor–critic architecture that balances value estimation and policy optimization. Furthermore, this technique uses the Grey Wolf Optimization (GWO) algorithm to improve the initial set of gains, resulting in more reliable outcomes and quicker dynamics. The GWO technique is notable for its disciplined and nature-inspired approach, which leads to faster decision-making and greater accuracy than other optimization methods. This method considers the system as a black box without its exact mathematical modeling, leading to lower complexity and computational burden. The effectiveness of this strategy is tested in both modeling and experimental scenarios utilizing the Hardware-In-Loop (HIL) framework, with considerable results and decreased error sensitivity.

Keywords: power converters; backstepping method; nonlinear stability; reinforcement learning algorithm; grey wolf optimization; hardware-in-loop testing (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/18/4941/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/18/4941/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:18:p:4941-:d:1751277

Access Statistics for this article

Energies is currently edited by Ms. Cassie Shen

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-09-18
Handle: RePEc:gam:jeners:v:18:y:2025:i:18:p:4941-:d:1751277