Two-Stage Optimization Research of Power System with Wind Power Considering Energy Storage Peak Regulation and Frequency Regulation Function
Juan Li and
Hongxu Zhang ()
Additional contact information
Juan Li: School of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China
Hongxu Zhang: School of Electrical Engineering, Northeast Electric Power University, Jilin 132012, China
Energies, 2025, vol. 18, issue 18, 1-26
Abstract:
Addressing the problems of wind power’s anti-peak regulation characteristics, increasing system peak regulation difficulty, and wind power uncertainty causing frequency deviation leading to power imbalance, this paper considers the peak shaving and valley filling function and frequency regulation characteristics of energy storage, establishing a day-ahead and intraday coordinated two-stage optimization scheduling model for research. Stage 1 establishes a deterministic wind power prediction model based on time series Autoregressive Integrated Moving Average (ARIMA), adopts dynamic peak-valley identification method to divide energy storage operation periods, designs energy storage peak regulation working interval and reserves frequency regulation capacity, and establishes a day-ahead 24 h optimization model with minimum cost as the objective to determine the basic output of each power source and the charging and discharging plan of energy storage participating in peak regulation. Stage 2 still takes the minimum cost as the objective, based on the output of each power source determined in Stage 1, adopts Monte Carlo scenario generation and improved scenario reduction technology to model wind power uncertainty. On one hand, it considers how energy storage improves wind power system inertia support to ensure the initial rate of change of frequency meets requirements. On the other hand, considering energy storage reserve capacity responding to frequency deviation, it introduces dynamic power flow theory, where wind, thermal, load, and storage resources share unbalanced power proportionally based on their frequency characteristic coefficients, establishing an intraday real-time scheduling scheme that satisfies the initial rate of change of frequency and steady-state frequency deviation constraints. The study employs improved chaotic mapping and an adaptive weight Particle Swarm Optimization (PSO) algorithm to solve the two-stage optimization model and finally takes the improved IEEE 14-node system as an example to verify the proposed scheme through simulation. Results demonstrate that the proposed method improves the system net load peak-valley difference by 35.9%, controls frequency deviation within ±0.2 Hz range, and reduces generation cost by 7.2%. The proposed optimization scheduling model has high engineering application value.
Keywords: wind power uncertainty; scenario reduction; energy storage; peak and frequency regulation; two-stage optimal scheduling; dynamic power flow (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/18/4947/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/18/4947/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:18:p:4947-:d:1751579
Access Statistics for this article
Energies is currently edited by Ms. Cassie Shen
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().