Numerical and Experimental Research on the Effects of Hydrogen Injection Timing on the Performance of Hydrogen/N-Butanol Dual-Fuel Engine with Hydrogen Direct Injection
Weiwei Shang,
Xintong Shi,
Zezhou Guo () and
Xiaoxue Xing
Additional contact information
Weiwei Shang: Electronic Information Engineering College, Changchun University, Changchun 130022, China
Xintong Shi: Electronic Information Engineering College, Changchun University, Changchun 130022, China
Zezhou Guo: National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130022, China
Xiaoxue Xing: Electronic Information Engineering College, Changchun University, Changchun 130022, China
Energies, 2025, vol. 18, issue 18, 1-19
Abstract:
Hydrogen injection timing (HIT) plays a crucial role in the combustion and emission characteristics of a hydrogen/n-butanol dual-fuel engine with hydrogen direct injection. This study employed an integrated approach combining three-dimensional simulation modeling and engine test bench experiments to investigate the effects of HIT on engine performance. In order to have a more intuitive understanding of the physical and chemical change processes, such as the stratification state and combustion status of hydrogen in the cylinder, and to essentially explore the internal mechanism and fundamental reasons for the improvement in performance of n-butanol engines by hydrogen addition, a numerical study was conducted to examine the effects of HIT on hydrogen stratification and combustion behavior. The simulation results demonstrated that within the investigated range, at 100 °CA BTDC hydrogen injection time, hydrogen forms an ideal hydrogen stratification state in the cylinder; that is, a locally enriched hydrogen zone near the spark plug, while there is a certain distribution of hydrogen in the cylinder. Meanwhile, the combustion state also reaches the optimal level at this hydrogen injection moment. Consequently, 100 °CA BTDC is identified as the optimal HIT for a hydrogen/n-butanol dual-fuel engine. At the same time, an experimental study was performed to capture the actual complex processes and comprehensively evaluate combustion and emission characteristics. The experimental results indicate that both dynamic performance (torque) and combustion characteristics (cylinder pressure, flame development period, etc.) achieve optimal values at the HIT of 100 °CA BTDC. Notably, under lean-burn conditions, the combustion parameters exhibit greater sensitivity to HIT. Regarding emissions, the CO and HC emissions initially decreased slightly, then gradually increased with advanced injection timing. The 100 °CA BTDC timing effectively reduced the CO emissions at λ = 0.9 and 1.0. CO emissions at λ = 1.2, and showed minimal sensitivity to the injection timing variations. Therefore, optimized HIT facilitates enhanced combustion efficiency and emission performance in hydrogen-direct-injection n-butanol engines.
Keywords: n-butanol; hydrogen direct injection; hydrogen mixture distribution; numerical simulation; combustion and emissions (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/18/4987/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/18/4987/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:18:p:4987-:d:1753483
Access Statistics for this article
Energies is currently edited by Ms. Cassie Shen
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().