Boiling and Condensing Two-Phase Frictional Pressure Drop Within Minichannel Tubes—Comparison and New Model Development Based on Experimental Measurements
Calos Martínez-Lara,
Alejandro López-Belchí and
Francisco Vera-García ()
Additional contact information
Calos Martínez-Lara: Department of Thermal Engineering and Fluids, Universidad Politécnica de Cartagena, 30202 Cartagena, Murcia, Spain
Alejandro López-Belchí: Applied Physics and Naval Technology Department, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 52, 30203 Cartagena, Murcia, Spain
Francisco Vera-García: Department of Thermal Engineering and Fluids, Universidad Politécnica de Cartagena, 30202 Cartagena, Murcia, Spain
Energies, 2025, vol. 18, issue 18, 1-28
Abstract:
This study presents a comprehensive experimental investigation into the frictional pressure drop of two-phase flows—boiling and condensation—in horizontal minichannels, emphasizing its impact on the energy efficiency of vapor compression systems. A total of 3553 data points were obtained using six low-GWP refrigerants (R32, R134a, R290, R410A, R513A, and R1234yf) across a wide range of operating conditions in multiport aluminum tubes with hydraulic diameters of 0.715 mm and 1.16 mm. The dataset covers mass fluxes from 200 to 1230 kg m − 2 s − 1 , saturation temperatures between 5 °C and 55 °C, and vapor qualities from 0.05 to 0.95. Results showed a strong dependence of frictional pressure gradient on vapor quality, mass flux, and channel size. Boiling flows generated higher frictional losses than condensation, and high-density refrigerants such as R32 exhibited the largest pressure penalties, which can directly translate into increased compressor power demand. Conversely, higher saturation temperatures were associated with lower frictional losses, highlighting the role of thermophysical properties in improving energy performance. Additionally, an inverse correlation between saturation temperature and frictional pressure gradient was observed, attributed to variations in thermophysical properties such as viscosity and surface tension. Existing correlations from the literature were assessed against the experimental dataset, with notable deviations observed in several cases, particularly for R134a under high-quality conditions. Consequently, a new empirical correlation was developed for predicting the frictional pressure drop in two-phase flow through minichannels. The proposed model, formulated using a power-law regression approach and incorporating dimensionless parameters, achieved better agreement with the experimental data, reducing prediction error to within ±20%, improving the accuracy for the majority of cases. This work provides a robust and validated dataset for the development and benchmarking of predictive models in compact heat exchanger design. By enabling the more precise estimation of two-phase pressure drops in compact heat exchangers, the findings support the design of refrigeration, air-conditioning, and heat pump systems with minimized flow resistance and reduced auxiliary energy consumption. This contributes to lowering compressor workload, improving coefficient of performance (COP), and it ultimately advances the development of next-generation cooling technologies with enhanced energy efficiency.
Keywords: boiling; condensation; minichannel; two-phase flow; frictional pressure drop; correlations model; thermal performance; energy efficiency; heat transfer performance (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/18/5010/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/18/5010/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:18:p:5010-:d:1754175
Access Statistics for this article
Energies is currently edited by Ms. Cassie Shen
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().