Autonomous Decentralized Cooperative Control DC Microgrid Deployed in Residential Areas
Hirohito Yamada ()
Additional contact information
Hirohito Yamada: International Research Institute of Disaster Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai 980-8572, Japan
Energies, 2025, vol. 18, issue 18, 1-23
Abstract:
This paper presents a DC microgrid architecture with autonomous decentralized control that exhibits high resilience against increasingly common threats, such as natural disasters and cyber-physical attacks, as well as its operational characteristics under normal circumstances. The proposed system achieves autonomous decentralized cooperative control by combining a battery-integrated DC baseline, in which multiple distributed small-scale batteries are directly connected to the grid baseline, with a weakly coupled grid architecture in which each power device is loosely coupled via the grid baseline. Unlike conventional approaches that assign grid formation, inertial support, and power balancing functions to DC/DC converters, the proposed approach delegates these fundamental grid roles to the distributed batteries. This configuration simplifies the control logic of the DC/DC converters, limiting their role to power exchange only. To evaluate system performance, a four-family DC microgrid model incorporating a typical Japanese home environment, including an EV charger, was constructed in MATLAB/Simulink R2025a and subjected to one-year simulations. The results showed that with approximately 5 kW of PV panels and a 20 kWh battery capacity per household, a stable power supply could be maintained throughout the year, with more than 50% of the total power consumption covered by solar energy. Furthermore, the predicted battery life was over 20 years, confirming the practicality and economic viability of the proposed residential microgrid design.
Keywords: DC grid; residential microgrid; autonomous decentralized cooperative control; weak-coupling grid (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/18/5041/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/18/5041/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:18:p:5041-:d:1755233
Access Statistics for this article
Energies is currently edited by Ms. Cassie Shen
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().