Numerical Modeling of Photovoltaic Cells with the Meshless Global Radial Basis Function Collocation Method
Murat Ispir and
Tayfun Tanbay ()
Additional contact information
Murat Ispir: Department of Mechanical Engineering, Faculty of Engineering and Natural Sciences, Konya Technical University, Konya 42250, Türkiye
Tayfun Tanbay: Department of Mechanical Engineering, Faculty of Engineering and Natural Sciences, Bursa Technical University, Bursa 16310, Türkiye
Energies, 2025, vol. 18, issue 19, 1-22
Abstract:
Accurate prediction of photovoltaic performance hinges on resolving the electron density in the P-region and the hole density in the N-region. Motivated by this need, we present a comprehensive assessment of a meshless global radial basis function (RBF) collocation strategy for the steady current continuity equation, covering a one-dimensional two-region P–N junction and a two-dimensional single-region problem. The study employs Gaussian (GA) and generalized multiquadric (GMQ) bases, systematically varying shape parameter and node density, and presents a detailed performance analysis of the meshless method. Results map the accuracy–stability–computation-time landscape: GA achieves faster convergence but over a narrower stability window, whereas GMQ exhibits greater robustness to shape-parameter variation. We identify stability plateaus that preserve accuracy without severe ill-conditioning and quantify the runtime growth inherent to dense global collocation. A utopia-point multi-objective optimization balances error and computation time to yield practical node-count guidance; for the two-dimensional case with equal weighting, an optimum of 19 intervals per side emerges, largely insensitive to the RBF choice. Collectively, the results establish global RBF collocation as a meshless, accurate, and systematically optimizable alternative to conventional mesh-based solvers for high-fidelity carrier-density prediction in P-N junctions, thereby enabling more reliable performance analysis and design of photovoltaic devices.
Keywords: photovoltaic cell; carrier continuity equation; meshless method; RBF collocation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/19/5267/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/19/5267/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:19:p:5267-:d:1764651
Access Statistics for this article
Energies is currently edited by Ms. Cassie Shen
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().