Quantifying the Need for Synthetic Inertia in the UK Grid: Empirical Evidence from Frequency Demand and Generation Data
Sid-Ali Amamra ()
Additional contact information
Sid-Ali Amamra: School of Computing and Engineering, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
Energies, 2025, vol. 18, issue 20, 1-14
Abstract:
The increasing integration of inverter-based renewable energy sources is displacing conventional synchronous generation, resulting in a progressive reduction in system inertia and heightened challenges to frequency stability. This study presents a detailed empirical analysis of the UK electricity grid over a representative 24 h period, utilizing high-resolution datasets that capture grid frequency, energy demand, generation mix, and wholesale market prices. An inertia proxy is developed based on the share of synchronous generation, enabling quantitative assessment of its relationship with the Rate of Change of Frequency (RoCoF). Through the application of change point detection and unsupervised clustering algorithms, the analysis identifies critical renewable penetration thresholds beyond which frequency stability significantly deteriorates. These findings underscore the increasing importance of synthetic inertia in maintaining grid resilience under high renewable scenarios. The results offer actionable insights for system operators aiming to enhance frequency control strategies and contribute to the formulation of policy and technical standards regarding synthetic inertia provision in future low-inertia power systems.
Keywords: UK grid; synthetic inertia; renewable sources; frequency stability (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/20/5345/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/20/5345/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:20:p:5345-:d:1768372
Access Statistics for this article
Energies is currently edited by Ms. Cassie Shen
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().