Potential Impacts of Climate Change on South China Sea Wind Energy Resources Under CMIP6 Future Climate Projections
Yue Zhuo and
Bo Hong ()
Additional contact information
Yue Zhuo: School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
Bo Hong: School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
Energies, 2025, vol. 18, issue 20, 1-18
Abstract:
Wind is an important renewable energy source, and even minor variations in wind speed will significantly impact wind power generation. The objective of this study was to systematically assess the impacts of climate change on wind energy resources in the South China Sea (SCS) under future climate projections. To achieve this, we employed a multi-model ensemble approach based on Coupled Model Intercomparison Project Phase 6 (CMIP6) data under three Shared Socioeconomic Pathways (SSP1-2.6, SSP2-4.5, and SSP5-8.5). The results demonstrated that, in comparison with scatterometer wind data, the CMIP6 historical results (1995–2014) showed good performance in capturing the spatiotemporal distribution of wind power density (WPD) in the SCS. There were regional discrepancies in the central SCS due to the complex monsoon-driven wind dynamics. Future projections revealed an overall increase in annual mean wind power density (WPD) across the entire SCS by the mid-21st century (2046–2065) and late 21st century (2080–2099). The seasonal analyses indicated significant WPD increases in summer, especially in the northern SCS and the region adjacent to the Kalimantan strait. The increase in summer (>40 × 10 −4 m/s/year under SSP5-8.5) is about triple that in winter. In the late 21st century, an increase in WPD exceeding 10% can be generally anticipated under the SSP2-4.5 and SSP5-8.5 scenarios in all seasons. The extreme wind in the northern and central SCS will further increase by 5% under the three scenarios, which will add an extra extreme load to wind turbines and related marine facilities. These assessments are essential for wind farm planning and long-term energy production evaluations in the SCS. Based on the findings in this study, specific areas of concern can be targeted to conduct localized downscaling analyses and risk assessments.
Keywords: wind energy; future climate projections; CMIP6; South China Sea (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/20/5370/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/20/5370/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:20:p:5370-:d:1769438
Access Statistics for this article
Energies is currently edited by Ms. Cassie Shen
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().