A Data-Driven Decision-Making Tool for Prioritizing Resilience Strategies in Cold-Climate Urban Neighborhoods
Ahmed Nouby Mohamed Hassan () and
Caroline Hachem-Vermette
Additional contact information
Ahmed Nouby Mohamed Hassan: Department of Building, Civil and Environmental Engineering (BCEE), Concordia University, Montreal, QC H3G 2W1, Canada
Caroline Hachem-Vermette: Department of Building, Civil and Environmental Engineering (BCEE), Concordia University, Montreal, QC H3G 2W1, Canada
Energies, 2025, vol. 18, issue 20, 1-35
Abstract:
Cold-climate urban neighborhoods face mounting energy and thermal risks from extreme weather and power outages, creating trade-offs between different resilience capacities and objectives. This study develops a scalable, data-driven decision-making tool to support early-stage prioritization of resilience strategies at both the building component and neighborhood levels. A database of 48 active and passive strategies was systematically linked to 14 resilience objectives, reflecting energy- and thermally oriented capacities. Each strategy–objective pair was qualitatively assessed through a literature review and translated into probability distributions. Monte Carlo simulations (10,000 iterations) were performed to generate possible outcomes and several scores were calculated. Comparative scenario analysis—spanning holistic, short-term, long-term, energy-oriented, and thermally oriented perspectives—highlighted distinct adoption patterns. Active energy strategies, such as ESS, decentralized RES, microgrids, and CHP, consistently achieved the highest adoption (A) scores across levels and scenarios. Several passive measures, including green roofs, natural ventilation with passive heat recovery, and responsive glazing, also demonstrated strong multi-objective performance and outage resilience. A case study application integrated stakeholder-specific objective weightings, revealing convergent strategies suitable for immediate adoption and divergent ones requiring negotiation. This tool provides an adaptable probabilistic foundation for evaluating resilience strategies under uncertainty.
Keywords: urban neighborhoods; climate change; energy resilience; thermal resilience; decision-making; passive strategies; active strategies; data-driven; probabilistic analysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/20/5421/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/20/5421/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:20:p:5421-:d:1771356
Access Statistics for this article
Energies is currently edited by Ms. Cassie Shen
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().