Entropy–Evolutionary Evaluation of Sustainability ( E 3 ): A Novel Approach to Energy Sustainability Assessment—Evidence from the EU-27
Magdalena Tutak (),
Jarosław Brodny () and
Wieslaw Wes Grebski
Additional contact information
Magdalena Tutak: Faculty of Mining, Safety Engineering and Industrial Automation, Silesian University of Technology, 44-100 Gliwice, Poland
Jarosław Brodny: Faculty of Organization and Management, Silesian University of Technology, 44-100 Gliwice, Poland
Wieslaw Wes Grebski: The Pennsylvania State University, 76 University Drive, Hazleton, PA 18202, USA
Energies, 2025, vol. 18, issue 20, 1-40
Abstract:
In the current geopolitical context, sustainable energy development has become one of the pillars of global economic growth. This issue is well recognized in the European Union, which has undertaken a number of measures to achieve sustainable development goals. For these measures to be effective, it is essential to conduct a reliable, multi-variant diagnosis of the state of energy development in the EU-27 countries. This paper addresses this highly topical and important issue. It presents a new proprietary method—the Entropy–Evolutionary Evaluation of Sustainability ( E 3 )—based on a multidimensional approach to researching and evaluating the state of sustainable energy development in the EU-27 countries between 2014 and 2023. Through the integration of 19 indicators representing the adopted dimensions of the study (energy, economic, environmental, and social), the method enabled both a static assessment and a dynamic analysis of energy transition processes across space and time. To determine the weights of the indicators for each dimension of sustainable energy development, the CRITIC, Entropy, and equal weight methods, along with the Laplace criterion, were applied. The Analytic Hierarchy Process method was used to establish the weights of the dimensions themselves. An important component of the approach was the inclusion of scenario studies, which made it possible to assess sustainable energy development under five variants: baseline, level, equilibrium, transformational, and neutral. These scenarios were based on different weight values assigned to three factors: the level of energy development ( L ), its stability ( S ), and the trajectory of change ( T ~ ). The results, expressed in the form of a total index value and dimensional indices, reveal significant diversity among the EU-27 countries in terms of sustainable energy development. Sweden, Finland, Denmark, Latvia, and Austria achieved the best results, while Cyprus, Malta, Ireland, and Luxembourg—countries heavily dependent on energy imports, with limited diversification of their energy mix and high energy costs—performed the worst. The developed method and the results obtained should serve as a valuable source of knowledge to support decision-making and the formulation of strategies concerning the pace and direction of actions related to the energy transition.
Keywords: sustainable energy development; entropy–evolutionary evaluation of sustainability method; EU-27; multi-criteria analysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/20/5481/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/20/5481/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:20:p:5481-:d:1773745
Access Statistics for this article
Energies is currently edited by Ms. Cassie Shen
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().