Techno-Economic Assessment of Carbon-Neutral Ammonia Fuel for Ships from Renewable Wind Energy
Yunjing Qi,
Yaodong Wang () and
Ye Huang
Additional contact information
Yunjing Qi: Department of Engineering, Durham University, Durham DH1 3LE, UK
Yaodong Wang: Department of Engineering, Durham University, Durham DH1 3LE, UK
Ye Huang: Belfast School of Architecture and the Built Environment, Ulster University, Belfast BT15 1AP, UK
Energies, 2025, vol. 18, issue 20, 1-20
Abstract:
Climate change is fuelled by the continued growth of global carbon emissions, with the widespread use of fossil fuels being the main driver. To achieve a decarbonisation transition of the energy mix, the development of clean and renewable fuels has become crucial. Ammonia is seen as an important option for decarbonisation in the transport and energy sectors due to its zero-carbon emission potential and renewable energy compatibility. However, the high energy consumption and carbon emissions of the conventional Haber–Bosch method limit its sustainability. A green ammonia synthesis system was designed using ECLIPSE and Excel simulations in the study. Results show that at a recirculation ratio of 70%, the system’s annual total energy consumption is 426.22 GWh, with annual ammonia production reaching 8342.78 t. The optimal system configuration comprises seven 12 MW offshore wind turbines, integrated with a 460 MWh lithium battery and 240 t of hydrogen storage capacity. At this configuration, the LCOE is approximately £5956.58/t. It shows that incorporating renewable energy can significantly reduce greenhouse gas emissions, but further optimisation of energy storage configurations and reaction conditions is needed to lower costs. This research provides a reference for the industrial application of green ammonia in the transportation sector.
Keywords: ammonia fuel; ammonia synthesis; carbon emissions reduction; renewable energy (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/20/5485/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/20/5485/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:20:p:5485-:d:1773819
Access Statistics for this article
Energies is currently edited by Ms. Cassie Shen
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().