EconPapers    
Economics at your fingertips  
 

Modeling Gas Producibility and Hydrogen Potential—An Eastern Mediterranean Case Study

Eleni Himona and Andreas Poullikkas ()
Additional contact information
Eleni Himona: School of Engineering, Frederick University, 7 Frederickou Street, 1036 Nicosia, Cyprus
Andreas Poullikkas: School of Engineering, Frederick University, 7 Frederickou Street, 1036 Nicosia, Cyprus

Energies, 2025, vol. 18, issue 20, 1-22

Abstract: The transition to low-carbon energy systems demands robust strategies that leverage existing fossil resources while integrating renewable technologies. In this work, a single-cycle Gaussian-based producibility model is developed to forecast natural gas production profiles, domestic consumption, export potential, hydrogen production and revenues, adaptive for untapped natural gas discoveries. Annual natural gas production is represented by a bell curve defined by peak year and maximum capacity, allowing flexible adaptation to different reserve sizes. The model integrates renewable energy adoption and steam–methane reforming to produce hydrogen, while tracking revenue streams from domestic sales, exports and hydrogen markets alongside carbon taxation. Applicability is demonstrated through a case study of Eastern Mediterranean gas discoveries, where combined reserves of 2399 bcm generate a production peak of 100 bcm/year in 2035 and deliver 40.71 billion kg of hydrogen by 2050, leaving 411.87 bcm of reserves. A focused Cyprus scenario with 411 bcm of reserves peaks at 10 bcm/year, produces 4.07 billion kg of hydrogen and retains 212.29 bcm of reserves. Cumulative revenues span from USD 84.37 billion under low hydrogen pricing to USD 247.29 billion regionally, while the Cyprus-focused case yields USD 1.79 billion to USD 18.08 billion. These results validate the model’s versatility for energy transition planning, enabling strategic insights into infrastructure deployment, market dynamics and resource management in gas-rich regions.

Keywords: natural gas; hydrogen production; energy transition; steam methane reforming; renewable energy integration; producibility modeling (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/20/5490/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/20/5490/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:20:p:5490-:d:1774084

Access Statistics for this article

Energies is currently edited by Ms. Cassie Shen

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-10-18
Handle: RePEc:gam:jeners:v:18:y:2025:i:20:p:5490-:d:1774084