EconPapers    
Economics at your fingertips  
 

Physics-Informed Machine Learning for Intelligent Gas Turbine Digital Twins: A Review

Hiyam Farhat () and Amani Altarawneh
Additional contact information
Hiyam Farhat: Department of Mechanical and Nuclear Engineering, Tennessee Technological University, P.O. Box 5014, Cookeville, TN 38505, USA
Amani Altarawneh: Department of Computer Science, Tennessee Technological University, P.O. Box 5101, Cookeville, TN 38505, USA

Energies, 2025, vol. 18, issue 20, 1-27

Abstract: This review surveys recent progress in hybrid artificial intelligence (AI) approaches for gas turbine intelligent digital twins, with an emphasis on models that integrate physics-based simulations and machine learning. The main contribution is the introduction of a structured classification of hybrid AI methods tailored to gas turbine applications, the development of a novel comparative maturity framework, and the proposal of a layered roadmap for integration. The classification organizes hybrid AI approaches into four categories: (1) artificial neural network (ANN)-augmented thermodynamic models, (2) physics-integrated operational architectures, (3) physics-constrained neural networks (PcNNs) with computational fluid dynamics (CFD) surrogates, and (4) generative and model discovery approaches. The maturity framework evaluates these categories across five criteria: data dependency, interpretability, deployment complexity, workflow integration, and real-time capability. Industrial case studies—including General Electric (GE) Vernova’s SmartSignal, Siemens’ Autonomous Turbine Operation and Maintenance (ATOM), and the Electric Power Research Institute (EPRI) turbine digital twin—illustrate applications in real-time diagnostics, predictive maintenance, and performance optimization. Together, the classification and maturity framework provide the means for systematic assessment of hybrid AI methods in gas turbine intelligent digital twins. The review concludes by identifying key challenges and outlining a roadmap for the future development of scalable, interpretable, and operationally robust intelligent digital twins for gas turbines.

Keywords: physics-informed machine learning; hybrid modeling; gas turbine diagnostics; artificial neural networks; intelligent digital twin; virtual sensing; remaining useful life; transfer learning; generative models (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/20/5523/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/20/5523/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:20:p:5523-:d:1775474

Access Statistics for this article

Energies is currently edited by Ms. Cassie Shen

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-11-01
Handle: RePEc:gam:jeners:v:18:y:2025:i:20:p:5523-:d:1775474