EconPapers    
Economics at your fingertips  
 

Measuring and Simulating Wind Farm Wakes in the North Sea for Use in Assessing Other Regions

Richard J. Foreman (), Cristian Birzer and Beatriz Cañadillas ()
Additional contact information
Richard J. Foreman: School of Electrical and Mechanical Engineering, Adelaide University, Adelaide, SA 5005, Australia
Cristian Birzer: School of Electrical and Mechanical Engineering, Adelaide University, Adelaide, SA 5005, Australia
Beatriz Cañadillas: Institute of Flight Guidance, Technical University of Braunschweig, 38092 Braunschweig, Germany

Energies, 2025, vol. 18, issue 20, 1-18

Abstract: “Wind theft”, the extraction of upstream wind resources by neighboring wind farms on account of wind farm or cluster wakes, is receiving wider popular attention. Cluster wakes need to be accounted for in wider planning strategies, for which measurements and wake models can be deployed to aid this process. To contribute to such planning measures, a flight campaign for investigating cluster waking and other phenomena in the North Sea was conducted in 2020 and 2021 to contribute extra flight data obtained during the first flight campaign of 2016 and 2017. We report the latest results of the 2020–2021 flight campaign following the work and methodology of Cañadillas et al. (2020), where, using the 2016–2017 flight measurements, wake lengths extending up to approximately 60 km in stable stratification were inferred, consistent with an explicit stability-dependent analytical model. Analysis of the recent 2020–2021 flight data is approximately consistent with the results of Cañadillas et al. (2020) in stable conditions, albeit with greater scatter. This is because Cañadillas et al. (2020) analyzed only flights in which the wind conditions remained nearly constant during the measurement period, whereas the current dataset includes more variable conditions. Comparisons with the analytical-based engineering model show good first-order agreement with the flight data, but higher-order effects, such as flow non-homogeneity, are not accounted for. The application of these results to the stability information for developing offshore wind energy regions such as the East Coast of the USA and Bass Strait, Australia gives an outline of the expected wake lengths there. Simple engineering models, such as that demonstrated here, though primarily designed for commercial applications, need to be further developed into advanced spatial planning frameworks for offshore wind energy areas.

Keywords: offshore wind farm wakes; offshore wind farm clusters; analytical wake model; wake-length stability dependence; aircraft-based observations (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/20/5538/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/20/5538/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:20:p:5538-:d:1776205

Access Statistics for this article

Energies is currently edited by Ms. Cassie Shen

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-11-01
Handle: RePEc:gam:jeners:v:18:y:2025:i:20:p:5538-:d:1776205