EconPapers    
Economics at your fingertips  
 

Effect of Performance Packages on Fuel Consumption Optimization in Heavy-Duty Diesel Vehicles: A Real-World Fleet Monitoring Study

Maria Antonietta Costagliola, Luca Marchitto, Marco Piras () and Alessandra Berra
Additional contact information
Maria Antonietta Costagliola: Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili, National Research Council of Italy, Via G. Marconi, 4, 80125 Naples, Italy
Luca Marchitto: Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili, National Research Council of Italy, Via G. Marconi, 4, 80125 Naples, Italy
Marco Piras: Istituto di Scienze e Tecnologie per l’Energia e la Mobilità Sostenibili, National Research Council of Italy, Via G. Marconi, 4, 80125 Naples, Italy
Alessandra Berra: Dorf Ketal B.V., Schimmelt 2-16, 5611 ZX Eindhoven, The Netherlands

Energies, 2025, vol. 18, issue 20, 1-19

Abstract: In line with EU decarbonization targets for the heavy-duty transport sector, this study proposes an analytical methodology to assess the impact of diesel performance additives on fuel consumption in Euro 6 heavy-duty vehicles, the prevailing standard in the circulating European road tractor fleet. A fleet of five N3-category road tractors equipped with tanker semi-trailers was monitored over two phases. During the first 10-month baseline phase, the vehicles operated with standard EN 590 diesel (containing 6–7% FAME); in the second phase, they used a commercially available premium diesel containing performance-enhancing additives. Fuel consumption and route data were collected using a GPS-based system interfaced with the engine control unit via the OBD port and integrated with the fleet tracking platform. After applying data filtering to exclude low-quality or non-representative trips, a 1% reduction in fuel consumption was observed with the use of fuel with additives. Route-level analysis revealed higher savings (up to 5.1%) in high-load operating conditions, while most trips showed improvements between −1.6% and −3.4%. Temporal analysis confirmed the general trend across varying vehicle usage patterns. Aggregated fleet-level data proved to be the most robust approach to mitigate statistical variability. To evaluate the potential impact at scale, a European scenario was developed: a 1% reduction in fuel consumption across the 6.75 million heavy-duty vehicles in the EU could yield annual savings of 2 billion liters of diesel and avoid approximately 6 million tons of CO 2 emissions. Even partial adoption could lead to meaningful environmental benefits. Alongside emissions reductions, fuel additives also offer economic value by lowering operating costs, improving engine efficiency, and reducing maintenance needs.

Keywords: fuel additives; heavy-duty vehicles; fleet monitoring; fuel economy; real-world data; sustainability (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/20/5542/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/20/5542/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:20:p:5542-:d:1776204

Access Statistics for this article

Energies is currently edited by Ms. Cassie Shen

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-10-22
Handle: RePEc:gam:jeners:v:18:y:2025:i:20:p:5542-:d:1776204