Black-Box Modeling for Investigating Internal Resonances in High-Voltage Windings of Dry-Type Transformers
Felipe L. Probst () and
Stefan Tenbohlen ()
Additional contact information
Felipe L. Probst: Institute of Power Transmission and High Voltage Technology (IEH), University of Stuttgart, 70569 Stuttgart, Germany
Stefan Tenbohlen: Institute of Power Transmission and High Voltage Technology (IEH), University of Stuttgart, 70569 Stuttgart, Germany
Energies, 2025, vol. 18, issue 21, 1-17
Abstract:
Understanding internal resonance phenomena in transformer windings is essential for evaluating insulation performance and preventing equipment failure under transient conditions. This study presents a measurement-based modeling approach to assess internal voltage distributions in a high-voltage transformer winding of a dry-type distribution transformer. Frequency-domain admittance and voltage transfer functions were experimentally obtained and approximated using vector fitting. The resulting models were employed to simulate time-domain responses through a two-step procedure that integrates electromagnetic transient simulations of the terminal circuit with frequency-derived internal voltage models. The validation was performed using a sinusoidal excitation at 51 kHz, corresponding to the first-mode resonance frequency. Simulated internal voltages and input currents showed close agreement with experimental measurements, confirming the model’s accuracy. The study identified two critical resonance frequencies at 51 kHz and 59 kHz, at which voltage amplification can become severe. At 51 kHz, the maximum overvoltage reached nearly seven times the applied voltage at the winding midpoint, indicating a substantial risk of dielectric failure. These findings highlight the importance of accurately characterizing internal resonances in transformer windings, especially during insulation coordination studies. The proposed methodology offers an effective tool for analyzing internal overvoltages and contributes to the development of more robust transformer design and protection strategies.
Keywords: black-box model; dry-type transformer; frequency response; high-voltage winding; internal resonances; voltage transfer (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/21/5565/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/21/5565/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:21:p:5565-:d:1777280
Access Statistics for this article
Energies is currently edited by Ms. Cassie Shen
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().