EconPapers    
Economics at your fingertips  
 

Energy Symbiosis in Isolated Multi-Source Complementary Microgrids: Diesel–Photovoltaic–Energy Storage Coordinated Optimization Scheduling and System Resilience Analysis

Jialin Wang, Shuai Cao (), Rentai Li and Wei Xu
Additional contact information
Jialin Wang: College of Electrical Engineering, Naval University of Engineering, Wuhan 430030, China
Shuai Cao: School of Automation, Wuhan University of Technology, Wuhan 430070, China
Rentai Li: School of Automation, Wuhan University of Technology, Wuhan 430070, China
Wei Xu: School of Automation, Wuhan University of Technology, Wuhan 430070, China

Energies, 2025, vol. 18, issue 21, 1-37

Abstract: The coordinated scheduling of diesel generators, photovoltaic (PV) systems, and energy storage systems (ESS) is essential for improving the reliability and resilience of islanded microgrids in remote and mission-critical applications. This review systematically analyzes diesel–PV–ESSs from an “energy symbiosis” perspective, emphasizing the complementary roles of diesel power security, PV’s clean generation, and ESS’s spatiotemporal energy-shifting capability. A technology–time–performance framework is developed by screening advances over the past decade, revealing that coordinated operation can reduce the Levelized Cost of Energy (LCOE) by 12–18%, maintain voltage deviations within 5% under 30% PV fluctuations, and achieve nonlinear resilience gains. For example, when ESS compensates 120% of diesel start-up delay, the maximum disturbance tolerance time increases by 40%. To quantitatively assess symbiosis–resilience coupling, a dual-indicator framework is proposed, integrating the dynamic coordination degree (ζ ≥ 0.7) and the energy complementarity index (ECI > 0.75), supported by ten representative global cases (2010–2024). Advanced methods such as hybrid inertia emulation (200 ms response) and adaptive weight scheduling enhance the minimum time to sustain (MTTS) by over 30% and improve fault recovery rates to 94%. Key gaps are identified in dynamic weight allocation and topology-specific resilience design. To address them, this review introduces a “symbiosis–resilience threshold” co-design paradigm and derives a ζ–resilience coupling equation to guide optimal capacity ratios. Engineering validation confirms a 30% reduction in development cycles and an 8–12% decrease in lifecycle costs. Overall, this review bridges theoretical methodology and engineering practice, providing a roadmap for advancing high-renewable-penetration islanded microgrids.

Keywords: island microgrid; energy symbiosis; collaborative optimization; system resilience; LCOE (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/21/5741/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/21/5741/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:21:p:5741-:d:1784184

Access Statistics for this article

Energies is currently edited by Ms. Cassie Shen

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-11-01
Handle: RePEc:gam:jeners:v:18:y:2025:i:21:p:5741-:d:1784184