A New Design Strategy of Series of Tetrazole-Based High-Energy-Density Energy Storage Molecular Systems
Xiaowei Wu and
Qiyao Yu ()
Additional contact information
Xiaowei Wu: School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
Qiyao Yu: State Key Laboratory of Explosion Science and Safety Protection, Beijing Institute of Technology, Beijing 100081, China
Energies, 2025, vol. 18, issue 21, 1-14
Abstract:
Innovative energy storage technologies in the energetic materials field represent a critical frontier in energy research. Consequently, we developed a performance regulation strategy based on tetrazolyl high-energy-density energy storage molecular systems and theoretically assessed their energetic properties and safety profiles. The findings reveal that substituent characteristics profoundly affect the performances of these energy storage molecular systems. The molecule systems ((1-amino-1H-tetrazol-5-yl)azanediyl)bis(1H-tetrazole-5,1-diyl) dinitrate, ((1-azido-1H-tetrazol-5-yl)azanediyl)bis(1H-tetrazole-5,1-diyl) dinitrate, ((1-nitro-1H-tetrazol-5-yl)azanediyl)bis(1H-tetrazole-5,1-diyl) dinitrate, and especially ((1-azido-1H-tetrazol-5-yl)azanediyl)bis(1H-tetrazole-5,1-diyl) dinitrate, exhibit exceptional performances, including high density, high heat of formation, high detonation velocity and pressure, zero oxygen balance, and low impact sensitivity, qualifying them as high-energy-density and low-sensitivity candidates. This work offers novel pathways for advancing energy storage technologies in energetic materials field.
Keywords: energy storage molecule; energy characteristics; safety performances (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/21/5783/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/21/5783/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:21:p:5783-:d:1785757
Access Statistics for this article
Energies is currently edited by Ms. Cassie Shen
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().