EconPapers    
Economics at your fingertips  
 

BLDC Motor Models for Multi-Domain Modeling of Electric Power Tools

Paweł Kocwa (), Andrzej Tutaj, Tomasz Drabek and Paweł Piątek ()
Additional contact information
Paweł Kocwa: Department of Automatic Control and Robotics, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland
Andrzej Tutaj: Department of Automatic Control and Robotics, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland
Tomasz Drabek: Department of Power Electronics and Automation of Energy Conversion Systems, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland
Paweł Piątek: Department of Automatic Control and Robotics, Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland

Energies, 2025, vol. 18, issue 21, 1-27

Abstract: Accurate modeling of Brushless DC (BLDC) motors is crucial for the multi-domain simulation of complex electromechanical systems like electric torque tools, especially when high fidelity is required for Model-Based Design (MBD) and controller validation. Standard BLDC models often employ simplifications that may not capture critical operational details. This paper presents a comparative analysis of four distinct BLDC motor simulation models: two based on ready-to-use MATLAB/Simulink/Simscape Electrical library blocks (Specialized Power Systems/Electrical Machines/Permanent Magnet Synchronous Machine and Electromechanical/Permanent Magnet/BLDC) and two custom models developed by the authors at AGH University. The models are evaluated based on their structure, underlying equations, and performance in simulating typical operational scenarios of an electric torque tool. Key assessment criteria include the ability to implement realistic (e.g., tabulated, non-ideal) back-EMF (electromotive force) profiles, incorporate cogging torque, model commutation effects, and flexibility for modification. Simulation results indicate that while all models can be suitable for basic control design, the custom-developed models offer greater flexibility and fidelity in representing detailed motor phenomena such as irregular back-EMF waveforms and cogging torque, making them better suited for advanced, high-precision applications. Conversely, standard library models, particularly the one underlying the PMSM block, exhibit limitations in custom back-EMF implementation. This study concludes by recommending models based on specific application requirements and outlines directions for future enhancements, including thermal modeling and iron loss representation.

Keywords: BLDC motor; multi-domain modeling; electric power tools; electric torque tool; simulation; Simscape; model comparison (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/21/5851/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/21/5851/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:21:p:5851-:d:1789029

Access Statistics for this article

Energies is currently edited by Ms. Cassie Shen

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-11-07
Handle: RePEc:gam:jeners:v:18:y:2025:i:21:p:5851-:d:1789029