AI-Integrated Smart Grading System for End-of-Life Lithium-Ion Batteries Based on Multi-Parameter Diagnostics
Seongsoo Cho and
Hiedo Kim ()
Additional contact information
Seongsoo Cho: Department of Applied Artificial Intelligence, Hansung University, Seoul 02876, Republic of Korea
Hiedo Kim: SUNGSAM Co., Ltd., Suwon 16677, Republic of Korea
Energies, 2025, vol. 18, issue 22, 1-35
Abstract:
The rapid increase in retired lithium-ion batteries (LIBs) from electric vehicles (EVs) highlights the urgent need for accurate and automated end-of-life (EOL) assessment. This study proposes an AI-integrated smart grading system that combines hardware diagnostics and deep learning-based evaluation to classify the residual usability of retired batteries. The system incorporates a bidirectional charger/discharger, a CAN-enabled battery management system (BMS), and a GUI-based human–machine interface (HMI) for synchronized real-time data acquisition and control. Four diagnostic indicators—State of Health (SOH), Direct Current Internal Resistance (DCIR), temperature deviation, and voltage deviation—are processed through a deep neural network (DNN) that outputs categorical grades (A: reusable, B: repurposable, C: recyclable). Experimental validation shows that the proposed AI-assisted model improves grading accuracy by 18% and reduces total testing time by 30% compared to rule-based methods. The integration of adaptive correction models further enhances robustness under varying thermal and aging conditions. Overall, this system provides a scalable framework for automated, explainable, and sustainable battery reuse and recycling, contributing to the circular economy of energy storage.
Keywords: end-of-life batteries; AI-based grading system; state of health (SOH) and DCIR; deep neural network (DNN); battery reuse and recycling (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/22/5915/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/22/5915/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:22:p:5915-:d:1791540
Access Statistics for this article
Energies is currently edited by Ms. Cassie Shen
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().