EconPapers    
Economics at your fingertips  
 

A Two-Stage Optimal Dispatch Strategy for Electric-Thermal-Hydrogen Integrated Energy System Based on IGDT and Fuzzy Chance-Constrained Programming

Na Sun, Hongxu He and Haiying Dong ()
Additional contact information
Na Sun: School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
Hongxu He: School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
Haiying Dong: School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

Energies, 2025, vol. 18, issue 22, 1-22

Abstract: To address the economic and reliability challenges of high-penetration renewable energy integration in electricity-heat-hydrogen integrated energy systems and support the dual-carbon strategy, this paper proposes an optimal dispatch method integrating Information Gap Decision Theory (IGDT) and Fuzzy Chance-Constrained Programming (FCCP). An IES model coupling multiple energy components was constructed to exploit multi-energy complementarity. A stepped carbon trading mechanism was introduced to quantify emission costs. For interval uncertainties in renewable generation, IGDT-based robust and opportunistic dispatch models were established; for fuzzy load uncertainties, FCCP transformed them into deterministic equivalents, forming a dual-layer “IGDT-FCCP” uncertainty handling framework. Simulation using CPLEX demonstrated that the proposed model dynamically adjusts uncertainty tolerance and confidence levels, effectively balancing economy, robustness, and low-carbon performance under complex uncertainties: reducing total costs by 12.7%, cutting carbon emissions by 28.1%, and lowering renewable curtailment to 1.8%. This study provides an advanced decision-making paradigm for low-carbon resilient IES.

Keywords: integrated energy system; information gap decision theory; fuzzy chance-constrained programming; electric-hydrogen hybrid energy storage; carbon trading; optimal dispatch (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/22/5927/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/22/5927/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:22:p:5927-:d:1791986

Access Statistics for this article

Energies is currently edited by Ms. Cassie Shen

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-11-20
Handle: RePEc:gam:jeners:v:18:y:2025:i:22:p:5927-:d:1791986