A Cluster-Based Filtering Approach to SCADA Data Preprocessing for Wind Turbine Condition Monitoring and Fault Detection
Krzysztof Kijanowski,
Tomasz Barszcz and
Phong Ba Dao ()
Additional contact information
Krzysztof Kijanowski: AGH University of Krakow, Faculty of Mechanical Engineering and Robotics, Department of Robotics and Mechatronics, al. Mickiewicza 30, 30-059 Krakow, Poland
Tomasz Barszcz: AGH University of Krakow, Faculty of Mechanical Engineering and Robotics, Department of Robotics and Mechatronics, al. Mickiewicza 30, 30-059 Krakow, Poland
Phong Ba Dao: AGH University of Krakow, Faculty of Mechanical Engineering and Robotics, Department of Robotics and Mechatronics, al. Mickiewicza 30, 30-059 Krakow, Poland
Energies, 2025, vol. 18, issue 22, 1-21
Abstract:
The high cost of wind turbine maintenance has intensified the need for reliable fault detection and condition monitoring methods. While Supervisory Control and Data Acquisition (SCADA) systems provide valuable operational data, the raw signals often contain noise, outliers, and missing or redundant entries, which can compromise analysis accuracy. This study presents a novel cluster-based outlier removal approach for SCADA data preprocessing, featuring a unique flexibility to include or exclude negative power values—a factor rarely investigated but potentially critical for fault detection performance. The method applies the K-Means++ unsupervised clustering algorithm to group data points along the wind speed–power curve. The number of clusters is determined heuristically using the elbow method, while outliers are identified through Mahalanobis distance with thresholds derived from Chebyshev’s inequality theorem. The approach was validated using SCADA data from a wind farm in Portugal and further assessed with a CUSUM test-based structural change detection method to study how preprocessing choices—outlier thresholds (5% vs. 1%) and inclusion/exclusion of negative power values—affect early fault identification. Results demonstrate reliable fault detection up to 14 days before failure, retaining over 99% of the original dataset. This work provides key insights into preprocessing impacts on model reliability and offers an open-source Python implementation for reproducibility.
Keywords: wind turbine; SCADA data; data preprocessing; outlier removal; condition monitoring; Mahalanobis distance; K-Means algorithm (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/22/5954/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/22/5954/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:22:p:5954-:d:1793165
Access Statistics for this article
Energies is currently edited by Ms. Cassie Shen
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().