EconPapers    
Economics at your fingertips  
 

A Review on Laminar Burning Velocity of Ammonia Flames

Xiao Yang, Zhijian Xiao, Rui Hu and Dongdong Feng ()
Additional contact information
Xiao Yang: School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Zhijian Xiao: School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Rui Hu: School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Dongdong Feng: School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

Energies, 2025, vol. 18, issue 22, 1-29

Abstract: As a zero-carbon fuel, ammonia holds significant potential for achieving the “dual carbon” strategic goals. However, its extremely low laminar burning velocity (LBV) limits its direct application in combustion systems. This work systematically reviews the research progress on the LBV of ammonia flames, focusing on three key aspects: measurement methods, effects of combustion conditions, and reaction kinetic models. In terms of measurement methods, the principles, applicability, and limitations of the spherical outwardly propagating flame method, Bunsen-burner method, counter-flow flame method, and heat flux method are discussed in detail. It is pointed out that the heat flux method and counter-flow flame method are more suitable for the accurate measurement of ammonia flame LBV due to their low stretch rate and high stability. Regarding the effects of combustion conditions, the LBV characteristics of pure ammonia flames under ambient temperature and pressure are summarized. The influence patterns of three factors on LBV are analyzed systematically: blending high-reactivity fuels (e.g., hydrogen and methane), oxygen-enriched conditions, and variations in temperature and pressure. This analysis reveals effective approaches to improve ammonia combustion performance. Furthermore, the promoting effect of high-reactivity fuel blending on liquid ammonia combustion was also summarized. For reaction kinetic models, various chemical reaction mechanisms applicable to pure ammonia and ammonia-blended fuels (ammonia/hydrogen, ammonia/methane, etc.) are sorted out. The performance and discrepancies of each model in predicting LBV are evaluated. It is noted that current models still have significant uncertainties under specific conditions, such as high pressure and moderate blending ratios. This review aims to provide theoretical references and data support for the fundamental research and engineering application of ammonia combustion, promoting the development and application of ammonia as a clean fuel.

Keywords: ammonia; laminar burning velocity; measurement methods; specific characteristics; kinetics models (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/22/6000/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/22/6000/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:22:p:6000-:d:1795538

Access Statistics for this article

Energies is currently edited by Ms. Cassie Shen

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-11-20
Handle: RePEc:gam:jeners:v:18:y:2025:i:22:p:6000-:d:1795538