Design and Simulation of Inductive Power Transfer Pad for Electric Vehicle Charging
Md Aurongjeb,
Yumin Liu () and
Muhammad Ishfaq
Additional contact information
Md Aurongjeb: State Key Laboratory of Information Photonics and Optical Communications, Department of Electronics Science and Technology, School of Electronics Engineering, Beijing 100876, China
Yumin Liu: State Key Laboratory of Information Photonics and Optical Communications, Department of Electronics Science and Technology, School of Electronics Engineering, Beijing 100876, China
Muhammad Ishfaq: College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China
Energies, 2025, vol. 18, issue 2, 1-13
Abstract:
Electric vehicles (EVs) wireless charging is enabled by inductive power transfer (IPT) technology, which eliminates the need for physical connections between the vehicle and the charging station, allowing power to be transmitted without the use of cables. However, in the present wireless charging equipment, the power transfer still needs to be improved. In this work, we present a power transfer structure using a unique “DD circular (DDC) power pad”, which mitigates the two major obstacles of wireless EV charging, due to the mitigating power of electromagnetic field (EMF) leakage emissions and the increase in misalignment tolerance. We present a DDC power pad structure, which integrates features from both double D(DD) and circular power pads. We first build a three-dimensional electromagnetic model based on the DDC structure. A detailed analysis is performed of the electromagnetic characteristics, and the device parameters regarding the power transfer efficiency, coupling coefficient, and mutual inductance are also presented to evaluate the overall performance. Then, we examine the performance of the DDC power pad under various horizontal and vertical misalignment circumstances. The coupling coefficients and mutual inductance, as two essential factors for effective power transmission under dynamic circumstances, are investigated. The findings of misalignment effects on coupling efficiency indicate that the misalignment does not compromise the DDC pad’s robust performance. Therefore, our DDC power pad structure has a better electromagnetic characteristic and a higher misalignment tolerance than conventional circular and DD pads. In general, the DDC structure we present makes it a promising solution for wireless EV charging systems and has good application prospects.
Keywords: simulation; electric vehicle; wireless charging; power transfer pad; coupling coefficient (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/2/244/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/2/244/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:2:p:244-:d:1562252
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().