EconPapers    
Economics at your fingertips  
 

LSTM vs. Prophet: Achieving Superior Accuracy in Dynamic Electricity Demand Forecasting

Saleh Albahli ()
Additional contact information
Saleh Albahli: Department of Information Technology, College of Computer, Qassim University, Buraydah 51452, Saudi Arabia

Energies, 2025, vol. 18, issue 2, 1-23

Abstract: Accurate electricity demand forecasting is critical for improving energy efficiency, maintaining grid stability, reducing operational costs, and promoting sustainability. This study presents a novel hybrid forecasting model that integrates Long Short-Term Memory (LSTM) networks and Prophet models, leveraging their complementary strengths through a dynamic weighted ensemble methodology. The LSTM component captures nonlinear dependencies and long-term temporal patterns, while Prophet models seasonal trends and event-driven fluctuations. The hybrid model was evaluated using a comprehensive dataset of hourly electricity consumption from Ontario, Canada, achieving a Root Mean Square Error (RMSE) of 65.34, Mean Absolute Percentage Error (MAPE) of 7.3%, and an R 2 of 0.98. These results demonstrate significant improvements over standalone LSTM, Prophet, and other State-of-the-Art methods, highlighting the hybrid model’s adaptability and superior accuracy. This study underscores the practical implications of the hybrid approach, particularly in energy grid management and resource optimization, setting a new benchmark for time series forecasting in the energy sector.

Keywords: smart environments; smart cities; deep learning; forecasting; electricity (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/2/278/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/2/278/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:2:p:278-:d:1563994

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:278-:d:1563994