EconPapers    
Economics at your fingertips  
 

Optimal Allocation and Sizing of Battery Energy Storage System in Distribution Network Using Mountain Gazelle Optimization Algorithm

Umme Mumtahina (), Sanath Alahakoon and Peter Wolfs
Additional contact information
Umme Mumtahina: School of Engineering and Technology, Central Queensland University, Rockhampton, QLD 4701, Australia
Sanath Alahakoon: School of Engineering and Technology, Central Queensland University, Gladstone, QLD 4680, Australia
Peter Wolfs: School of Engineering and Technology, Central Queensland University, Rockhampton, QLD 4701, Australia

Energies, 2025, vol. 18, issue 2, 1-19

Abstract: This paper addresses the problem of finding the optimal position and sizing of battery energy storage (BES) devices using a two-stage optimization technique. The primary stage uses mixed integer linear programming (MILP) to find the optimal positions along with their sizes. In the secondary stage, a relatively new algorithm called mountain gazelle optimizer (MGO) is implemented to find the technical feasibility of the solution, such as voltage regulation, energy loss reduction, etc., provided by the primary stage. The main objective of the proposed bi-level optimization technique is to improve the voltage profile and minimize the power loss. During the daily operation of the distribution grid, the charging and discharging behaviour is controlled by minimizing the voltage at each bus. The energy storage dispatch curve along with the locations and sizes are given as inputs to MGO to improve the voltage profile and reduce the line loss. Simulations are carried out in the MATLAB programming environment using an Australian radial distribution feeder, with results showing a reduction in system losses by 8.473%, which outperforms Grey Wolf Optimizer (GWO), Whale Optimization Algorithm (WOA), and Cuckoo Search Algorithm (CSA) by 1.059%, 1.144%, and 1.056%, respectively. During the peak solar generation period, MGO manages to contain the voltages within the upper boundary, effectively reducing reverse power flow and enhancing voltage regulation. The voltage profile is also improved, with MGO achieving a 0.348% improvement in voltage during peak load periods, compared to improvements of 0.221%, 0.105%, and 0.253% by GWO, WOA, and CSA, respectively. Furthermore, MGO’s optimization achieves a reduction in the fitness value to 47.260 after 47 iterations, demonstrating faster and more consistent convergence compared to GWO (47.302 after 60 iterations), WOA (47.322 after 20 iterations), and CSA (47.352 after 79 iterations). This comparative analysis highlights the effectiveness of the proposed two-stage optimization approach in enhancing voltage stability, reducing power loss, and ensuring better performance over existing methods.

Keywords: battery energy storage system; line loss reduction; mixed integer linear programming; mountain gazelle optimization algorithm; radial distribution network; voltage profile improvement (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/2/379/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/2/379/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:2:p:379-:d:1568954

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:379-:d:1568954