Large-Signal Nonlinear Average Model for a Voltage-Controlled Flyback Converter
David Eduardo Giraldo-Hernández,
Mario Andrés Bolaños-Navarrete (),
Fabiola Angulo,
Gustavo Osorio,
Nicols Astaiza,
Juan David Mina-Casaran and
Wilder Herrera
Additional contact information
David Eduardo Giraldo-Hernández: Departamento de Ingeniería Eléctrica, Electrónica y Computación, Percepción y Control Inteligente (PCI), Facultad de Ingeniería y Arquitectura, Universidad Nacional de Colombia—Sede Manizales, Manizales 170003, Colombia
Mario Andrés Bolaños-Navarrete: Departamento de Ingeniería Eléctrica, Electrónica y Computación, Percepción y Control Inteligente (PCI), Facultad de Ingeniería y Arquitectura, Universidad Nacional de Colombia—Sede Manizales, Manizales 170003, Colombia
Fabiola Angulo: Departamento de Ingeniería Eléctrica, Electrónica y Computación, Percepción y Control Inteligente (PCI), Facultad de Ingeniería y Arquitectura, Universidad Nacional de Colombia—Sede Manizales, Manizales 170003, Colombia
Gustavo Osorio: Departamento de Ingeniería Eléctrica, Electrónica y Computación, Percepción y Control Inteligente (PCI), Facultad de Ingeniería y Arquitectura, Universidad Nacional de Colombia—Sede Manizales, Manizales 170003, Colombia
Nicols Astaiza: Rynova Research Group, Rymel Ingeniería Eléctrica S.A.S., Copacabana 051040, Colombia
Juan David Mina-Casaran: Rynova Research Group, Rymel Ingeniería Eléctrica S.A.S., Copacabana 051040, Colombia
Wilder Herrera: Rynova Research Group, Rymel Ingeniería Eléctrica S.A.S., Copacabana 051040, Colombia
Energies, 2025, vol. 18, issue 3, 1-15
Abstract:
Flyback converters are popular in various electronic applications due to their efficiency, galvanic isolation, and voltage stepping-up. However, their modeling and analysis present significant challenges. Traditional switched models offer high precision but require extensive computational resources, which is impractical for large-scale simulations. The alternative linear large-signal models are effective for studying stability near fixed operating points but fall short in capturing transient dynamics, limiting their use in the analysis and design of large or complex systems. This paper presents a novel nonlinear approach for representing a proportional–integral (PI) voltage-controlled flyback converter operating in continuous conduction mode (CCM) that accurately captures transients while reducing the computational burden. Numerical simulations in a study case confirm that the model effectively captures the converter dynamics under various conditions, achieving steady-state errors below 0.07% and accelerations up to 54×. These results facilitate efficient design iterations across a broad range of applications, including renewable energy systems, battery charging, and electric vehicles.
Keywords: power converter; flyback converter; voltage control; nonlinear average model; continuous conduction mode; power converter application (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/3/451/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/3/451/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:3:p:451-:d:1572100
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().