Computational Fluid Dynamic Modeling of Pack-Level Battery Thermal Management Systems in Electric Vehicles
Yifan Chen and
Zhong Hu ()
Additional contact information
Yifan Chen: Department of Mechanical Engineering, J. J. Lohr College of Engineering/Brookings, South Dakota State University, Brookings, SD 57007, USA
Zhong Hu: Department of Mechanical Engineering, J. J. Lohr College of Engineering/Brookings, South Dakota State University, Brookings, SD 57007, USA
Energies, 2025, vol. 18, issue 3, 1-30
Abstract:
In electric vehicles (EVs), the batteries are arranged in the battery pack (BP), which has a small layout space and difficulty in dissipating heat. Therefore, in EVs, the battery thermal management systems (BTMSs) are critical to managing heat to ensure safety and performance, particularly under higher operating temperatures and longer discharge conditions. To solve this problem, in this article, the thermal analysis models of a 3-battery-cell BP were created, including scenarios (1) natural air cooling without a BTMS; (2) natural air cooling with water cooling hybrid BTMS; and (3) forced air cooling plus water cooling composite BTMS. The thermal performances of the pack-level BPs were simulated and analyzed based on computational fluid dynamics (CFD). A variety of boundary conditions and working parameters, such as ambient temperature, inlet coolant flow rate and initial temperature, discharge rate, air flow rate, and initial temperature, were considered. The results show that without a BTMS (Scenario 1), the maximum temperature in the BP rises rapidly and continuously to reach 63.8 °C, much higher than the upper bound of the recommended operating temperature range (ROTR between +20 °C to +35 °C) under the extreme discharge rate of 3 C and even if the discharge rate is 2 C. With a hybrid BTMS (Scenario 2), the maximum temperature in BP rises to about 38.7 °C, slightly above the upper bound of the ROTR. Lowering the coolant (water) initial temperature can effectively lower the temperature up to 5.7 °C in BP, but the water flow rate cannot since the turbulence model. While with a composite BTMS (Scenario 3), the temperature can be further lowered up to 1.5 °C under the extreme discharge rate of 3C, just reaching the upper bound of the ROTR. In addition, lowering the initial coolant temperature or air temperature can effectively decrease the temperatures up to 5.1 and 1.0 °C, respectively, in BP, but the coolant flow rate (due to the turbulence model) and the air flow rate cannot. Finally, the thermal performances of the different battery cells in the BP with different cooling systems and at the different positions of the BP were compared and analyzed. The present work may contribute to the design of BTMSs in the EV industry.
Keywords: electric vehicle; battery thermal management system; air and liquid cooling; computational fluid dynamics; battery pack (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/3/484/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/3/484/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:3:p:484-:d:1573307
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().