EconPapers    
Economics at your fingertips  
 

Prediction for Coastal Wind Speed Based on Improved Variational Mode Decomposition and Recurrent Neural Network

Muyuan Du, Zhimeng Zhang () and Chunning Ji ()
Additional contact information
Muyuan Du: State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin 300350, China
Zhimeng Zhang: State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin 300350, China
Chunning Ji: State Key Laboratory of Hydraulic Engineering Intelligent Construction and Operation, Tianjin University, Tianjin 300350, China

Energies, 2025, vol. 18, issue 3, 1-28

Abstract: Accurate and comprehensive wind speed forecasting is crucial for improving efficiency in offshore wind power operation systems in coastal regions. However, raw wind speed data often suffer from noise and missing values, which can undermine the prediction performance. This study proposes a systematic framework, termed VMD-RUN-Seq2Seq-Attention, for noise reduction, outlier detection, and wind speed prediction by integrating Variational Mode Decomposition (VMD), the Runge–Kutta optimization algorithm (RUN), and a Sequence-to-Sequence model with an Attention mechanism (Seq2Seq-Attention). Using wind speed data from the Shidao, Xiaomaidao, and Lianyungang stations as case studies, a fitness function based on the Pearson correlation coefficient was developed to optimize the VMD mode count and penalty factor. A comparative analysis of different Intrinsic Mode Function (IMF) selection ratios revealed that selecting a 50% IMF ratio effectively retains the intrinsic information of the raw data while minimizing noise. For outlier detection, statistical methods were employed, followed by a comparative evaluation of three models—LSTM, LSTM-KAN, and Seq2Seq-Attention—for multi-step wind speed forecasting over horizons ranging from 1 to 12 h. The results consistently showed that the Seq2Seq-Attention model achieved superior predictive accuracy across all forecast horizons, with the correlation coefficient of its prediction results greater than 0.9 in all cases. The proposed VMD-RUN-Seq2Seq-Attention framework outperformed other methods in the denoising, data cleansing, and reconstruction of the original wind speed dataset, with a maximum improvement of 21% in accuracy, producing highly accurate and reliable results. This approach offers a robust methodology for improving data quality and enhancing wind speed forecasting accuracy in coastal environments.

Keywords: variational mode decomposition; Seq2Seq with attention; wind prediction; data cleaning; data imputation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/3/542/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/3/542/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:3:p:542-:d:1576192

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-22
Handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:542-:d:1576192