The Potential of a Thermoelectric Heat Dissipation System: An Analytical Study
Xuechun Li,
Rujie Shi and
Kang Zhu ()
Additional contact information
Xuechun Li: School of Advanced Energy, Sun Yat-sen University, Shenzhen 518107, China
Rujie Shi: School of Advanced Energy, Sun Yat-sen University, Shenzhen 518107, China
Kang Zhu: School of Advanced Energy, Sun Yat-sen University, Shenzhen 518107, China
Energies, 2025, vol. 18, issue 3, 1-14
Abstract:
Thermoelectric heat dissipation systems offer unique advantages over conventional systems, including vibration-free operation, environmental sustainability, and enhanced controllability. This study examined the benefits of incorporating a thermoelectric cooler (TEC) into conventional heat sinks and investigated strategies to improve heat dissipation efficiency. A theoretical model introducing a dimensionless evaluation index ( r q ) is proposed to assess the system’s performance, which measures the ratio of the heat dissipation density of a conventional heat dissipation system to that of a thermoelectric heat dissipation system. Here, we subjectively consider 0.9 as a cutoff, and when r q < 0.9 , the thermoelectric heat dissipation system shows substantial superiority over conventional ones. In contrast, for r q > 0.9 , the advantage of the thermoelectric system weakens, making conventional systems more attractive. This analysis examined the effects of engineering leg length ( L * ), the heat transfer allocation ratio ( r h ), and temperature difference ( Δ T ) on heat dissipation capabilities. The results indicated that under a fixed heat source temperature, heat sink temperature, and external heat transfer coefficient, an optimal engineering leg length exists, maximizing the system’s heat dissipation performance. Furthermore, a detailed analysis revealed that the thermoelectric system demonstrated exceptional performance under small temperature differences, specifically when the temperature difference was below 32 K with the current thermoelectric (TE) materials. For moderate temperature differences between 32 K and 60 K, the system achieved optimal performance when r h ≥ − 2.4 + 1.37 e 0.019 Δ T . This work establishes a theoretical foundation for applying thermoelectric heat dissipation systems and provides valuable insights into optimizing hybrid heat dissipation systems.
Keywords: thermoelectric module; heat dissipation; dimensional analysis; potential (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/3/555/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/3/555/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:3:p:555-:d:1576596
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().