EconPapers    
Economics at your fingertips  
 

Renewable Energy from Solid Waste: A Spherical Fuzzy Multi-Criteria Decision-Making Model Addressing Solid Waste and Energy Challenges

Nattaporn Chattham, Nguyen Van Thanh () and Chawalit Jeenanunta
Additional contact information
Nattaporn Chattham: Department of Physics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
Nguyen Van Thanh: Department of Logistics and Supply Chain Management, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
Chawalit Jeenanunta: School of Management Technology, Sirindhorn International Institute of Technology, Thammasat University, Pathum Thani 12120, Thailand

Energies, 2025, vol. 18, issue 3, 1-20

Abstract: With rapid urbanization and industrialization, Vietnam is facing many challenges in solid waste management and increasing energy demand. In this context, the development of renewable energy from solid waste not only solves the problem of environmental pollution but also makes an important contribution to energy security and sustainable economic development. Solid waste to energy is a system of solid waste reatment by thermal methods, in which the heat generated from this treatment process is recovered and utilized to produce energy. Site selection is one of the biggest challenges for renewable energy projects. In addition to technical factors, this decision must also consider environmental impacts, including protecting ecosystems, minimizing noise, and limiting impacts on public health. To solve this problem, multi-criteria decision making (MCDM) methods combined with fuzzy numbers are often used. These methods allow planners to evaluate and balance competing factors, thereby determining the most optimal location for the project. In this study, the authors proposed a Spherical Fuzzy Multi-Criteria Decision-making Model (SFMCDM) for site selection in solid waste-to-energy projects. In the first stage, all criteria affecting the decision-making process are defined based on literature review, experts and triple bottom line model (social, environmental, and economic), and analytic hierarchy process (AHP), and fuzzy theory is applied for calculating the weights in the second stage. The weighted aggregated sum product assessment (WASPAS) method is utilized for ranking four potential locations in the final stage. The contribution of the proposed process is its structured, systematic, and innovative approach to solving the location selection problem for renewable energy projects. Choosing the right location not only ensures the success of the project but also contributes to the sustainable development of renewable energy.

Keywords: renewable energy; MCDM model; fuzzy theory; location selection; environment issue (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/3/589/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/3/589/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:3:p:589-:d:1577869

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-22
Handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:589-:d:1577869