EconPapers    
Economics at your fingertips  
 

Fuel Injection Optimization for Large-Bore Two-Stroke Natural-Gas Engines

Titilope Ibukun Banji, Gregg Arney and Daniel B. Olsen ()
Additional contact information
Titilope Ibukun Banji: Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
Gregg Arney: Pipeline Research Council International, Chantilly, VA 20151, USA
Daniel B. Olsen: Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA

Energies, 2025, vol. 18, issue 3, 1-20

Abstract: Recent methane emissions regulations present a challenge for the large-bore, natural-gas-fueled engines used at over 1700 compression stations across the US. Poor air–fuel mixing in the main combustion chamber of these engines results in low combustion efficiency and the resulting methane emissions. High-pressure fuel injection is believed to be a significant development in improving air–fuel mixing in natural-gas engine combustion chambers. This study aims to determine the sensitivity of in-cylinder mixing to injection pressures using Computational Fluid Dynamics (CFD) simulations, determine the limits of high-pressure fuel injection, and explore high-momentum low-pressure fuel injection. The engine, modeled using Converge Studio for CFD, was a Cooper-Bessemer large-bore, four-cylinder, GMV-4TF spark-ignited natural-gas engine with direct injection. The model was simulated for four sets of configured cases—baseline; ideal mixing; injection pressure variation; and low-pressure, high-momentum injection. The results show that fuel injection at 700 psi and −115 degrees BTDC gives the best in-cylinder mixing and improved mixing, potentially reducing methane emissions by half. The optimal timing for the injection at different injection pressures was determined. The level of mixing in low-pressure fuel-injection systems was also improved by the high-momentum fuel injector design. It was concluded that mixing can be further improved in integral gas compressor engines through fuel injection optimization.

Keywords: two-stroke engines; in-cylinder mixing; injection pressure; high momentum injection; large-bore engines; natural gas (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/3/624/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/3/624/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:3:p:624-:d:1579849

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-22
Handle: RePEc:gam:jeners:v:18:y:2025:i:3:p:624-:d:1579849