Enhancing Offshore Wind Turbine Integrity Management: A Bibliometric Analysis of Structural Health Monitoring, Digital Twins, and Risk-Based Inspection
Thomas Bull,
Min Liu (),
Linda Nielsen and
Michael Havbro Faber ()
Additional contact information
Thomas Bull: Department of the Built Environment, Aalborg University, DK-9220 Aalborg, Denmark
Min Liu: School of Civil Engineering, Harbin Institute of Technology, Harbin 150096, China
Linda Nielsen: North-Consulting, DK-9530 Aalborg, Denmark
Michael Havbro Faber: NIRAS A/S, DK-3450 Allerod, Denmark
Energies, 2025, vol. 18, issue 3, 1-19
Abstract:
The grand challenge of sustainable development, increased demands for resilient critical infrastructure systems, and cost efficiency calls for thinking and acting “out of the box”. We must strive to search for, identify, and utilize new and emerging technologies and new combinations of existing technologies that have the potential to improve present best practices. In integrity management of, e.g., bridge, offshore, and marine structures, relatively new technologies have shown substantial potentials for improvements that not least concern structural health monitoring (SHM), digital twin (DT)-based structural and mechanical modeling, and risk-based inspection (RBI) and maintenance planning (RBI). The motivation for the present paper is to investigate and document to what extent such technologies in isolation or jointly might have the potential to improve best practices for integrity management of offshore wind turbine structures. In this pursuit, the present paper conducts a comprehensive bibliometric analysis to explore the current landscape of advanced technologies within the offshore wind turbine industry suitable for integrity management. It examines the integration of these technologies into future best practices, taking into account normative factors like risk, resilience, and sustainability. Through this analysis, the study sheds light on current research trends and the degree to which normative considerations influence the application of RBI, SHM, and DT, either individually or in combination. This paper outlines the methodology used in the bibliometric study, including database selection and search term criteria. The results are presented through graphical representations and summarized key findings, offering valuable insights to inform and enhance industry practices. These key findings are condensed into a road map for future research and development, aimed at improving current best practices by defining a series of projects to be undertaken.
Keywords: integrity management; offshore wind turbines; risk-based inspection; digital twin; structural health monitoring; bibliometric study; road map (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/3/681/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/3/681/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:3:p:681-:d:1581901
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().