Transmission Line Icing Prediction Based on Physically Guided Fast-Slow Transformer
Feng Wang and
Ziming Ma ()
Additional contact information
Feng Wang: College of Civil Engineering and Architecture, China Three Gorges University, Yichang 443002, China
Ziming Ma: College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443002, China
Energies, 2025, vol. 18, issue 3, 1-15
Abstract:
To improve the accuracy of the icing prediction model for overhead transmission lines, a physics-guided Fast-Slow Transformer icing prediction model for overhead transmission lines is proposed, which is based on the icing prediction model with meteorological input characteristics. First, the ice cover data is segmented into different time resolutions through Fourier transform; a transformer model based on Fourier transform is constructed to capture the local and global correlations of the ice cover data; then, according to the calculation model of the comprehensive load on the conductor and the conductor state equation, the variation law of ice thickness, temperature, wind speed, and tension is analyzed, and the model loss function is constructed according to the variation law to guide the training process of the model. Finally, the sample mixing enhancement algorithm is used to reduce the overfitting problem and improve the generalization performance of the prediction model. The results show that the proposed prediction model can consider the mechanical constraints in the ice growth process and accurately capture the dependence between ice cover and meteorology. Compared with traditional prediction models such as LSTM (Long Short-Term Memory) networks, its mean square error, mean absolute error, and mean absolute percentage error are reduced by 0.464–0.674, 0.41–0.53, and 8.87–11.5%, respectively, while the coefficient of determination ( R 2 ) is increased by 0.2–0.29.
Keywords: icing prediction; Fourier transform; attention mechanism; physical guidance; Mixup (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/3/695/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/3/695/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:3:p:695-:d:1582702
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().