EconPapers    
Economics at your fingertips  
 

Torque Ripple Minimization for Switched Reluctance Motor Drives Based on Harris Hawks–Radial Basis Function Approximation

Jackson Oloo () and Szamel Laszlo ()
Additional contact information
Jackson Oloo: Department of Electric Power Engineering, Budapest University of Technology and Economics, Ergy Josef utca 18, H-1111 Budapest, Hungary
Szamel Laszlo: Department of Electric Power Engineering, Budapest University of Technology and Economics, Ergy Josef utca 18, H-1111 Budapest, Hungary

Energies, 2025, vol. 18, issue 4, 1-27

Abstract: Switched reluctance motor drives are becoming attractive for electric vehicle propulsion systems due to their simple and cheap construction. However, their operation is degraded by torque ripples due to the salient nature of the stator and rotor poles. There are several methods of mitigating torque ripples in switched reluctance motors (SRMs). Apart from changing the geometrical design of the motor, the less costly technique involves the development of an adaptive switching strategy. By selecting suitable turn-on and turn-off angles, torque ripples in SRMs can be significantly reduced. This work combines the benefits of Harris Hawks Optimization (HHO) and Radial Basis Functions (RBFs) to search and estimate optimal switching angles. An objective function is developed under constraints and the HHO is utilized to perform search stages for optimal switching angles that guarantee minimal torque ripples at every speed and current operating point. In this work, instead of storing the θ o n , θ o f f values in a look-up table, the values are passed on to an RBF model to learn the nonlinear relationship between the columns of data from the HHO and hence transform them into high-dimensional outputs. The values are used to train an enhanced neural network (NN) in an adaptive switching strategy to address the nonlinear magnetic characteristics of the SRM. The proposed method is implemented on a current chopping control-based SRM 8/6, 600 V model. Percentage torque ripples are used as the key performance index of the proposed method. A fuzzy logic switching angle compensation strategy is implemented in numerical simulations to validate the performance of the HHO-RBF method.

Keywords: switched reluctance motor; Harris Hawks optimization; radial basis functions; neural networks; torque ripple (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/4/1006/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/4/1006/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:4:p:1006-:d:1594836

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-22
Handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:1006-:d:1594836