EconPapers    
Economics at your fingertips  
 

Two-Stage Dual-Level Dispatch Optimization Model for Multiple Virtual Power Plants with Electric Vehicles and Demand Response Based on a Stackelberg Game

Jincheng Tang and Xiaolan Li ()
Additional contact information
Jincheng Tang: School of Electric and Information Engineering, Yunnan Minzu University, Kunming 650500, China
Xiaolan Li: School of Electric and Information Engineering, Yunnan Minzu University, Kunming 650500, China

Energies, 2025, vol. 18, issue 4, 1-22

Abstract: With the continuous increase in the number of electric vehicles (EVs) and the rapid development of demand response (DR) technology, the power grid faces unprecedented challenges. A two-stage dual-level dispatch optimization model of multiple virtual power plants based on a Stackelberg game is proposed in this paper. In the day-ahead stage, a two-layer optimization scheduling model is established, where the EV layer optimizes its actions for maximum comprehensive user satisfaction, while the VPP layer optimizes its actions for minimal operating costs and interaction power, determining the scheduling arrangements for each distributed energy resource. In the intraday stage, a Stackelberg game model is constructed with the distribution network operator (DNO) as the leader, aiming to maximize profits, and the VPP as the follower, aiming to minimize its own operational costs, with both parties engaging in a game based on electricity prices and energy consumption strategies. In the simulation case study, the effectiveness of the constructed model was verified. The results show that the model can effectively reduce user costs, thereby increasing the comprehensive satisfaction of EV users by 20.7% and reducing VPP operating costs by 13.37%.

Keywords: virtual power plant; electric vehicles; double layer; Stackelberg game; two-stage scheduling (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/4/896/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/4/896/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:4:p:896-:d:1590394

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-22
Handle: RePEc:gam:jeners:v:18:y:2025:i:4:p:896-:d:1590394